a: Xét tứ giác BDEF có
DE//BF
EF//BD
Do đó: BDEF là hình bình hành
=>BD=EF
b: Xét ΔADE và ΔEFC có
AD=EF
góc ADF=góc EFC
góc A=góc FEC
Do đó: ΔADE=ΔEFC
c: Vì BDEF là hình bình hành
nên BE cắt DF tại trung điểm của mỗi đường
=>B,M,E thẳng hàng
a: Xét tứ giác BDEF có
DE//BF
EF//BD
Do đó: BDEF là hình bình hành
=>BD=EF
b: Xét ΔADE và ΔEFC có
AD=EF
góc ADF=góc EFC
góc A=góc FEC
Do đó: ΔADE=ΔEFC
c: Vì BDEF là hình bình hành
nên BE cắt DF tại trung điểm của mỗi đường
=>B,M,E thẳng hàng
Cho ΔABC , D là trung điểm của AB , đường thẳng qua D và song song với BC cắt AC ở E , đường thẳng qua E và song song với AB cắt BC ở F . CMR :
1 , BD = EF
2 , ΔADE =ΔEFC
3, Gọi M là trung điểm của DF . Chứng minh B,M,E thẳng hàng
Cho tam giác ABC, D là trung điểm của AB. Qua D kẻ đường thẳng song song với BC cắt AC ở E. Qua E kẻ đường thẳng song song với AB cắt BC tại F.CMR:
a)AD=EF
b)Tam giác ADE bằng tam giác EFC
c)AE=EC,BF=FC
Tam giác ABC cân tại A, gọi M là trung điểm của BC. Biết AM = 8cm, AB = 10cm
a) Tính độ dài BC
b) Chứng minh AM vuông góc BC
c) Từ điểm D nằm giữa A và M. Kẻ DE⊥AB (E∈AB); DF ⊥AC (F∈AC); Chứng minh: DE=DF
d) Qua A kẻ đường thẳng d song song BC. Gọi I, H lần lượt là giao điểm của DE, DF với đường thẳng d. Chứng minh tam giác DIK cân
e) Giả sử góc IDK = 130° tính góc DIK = ? góc DKI = ?
Cho \(\Delta\) ABC, D là trung điểm của AB. Đường thẳng qua D song song với BC cắt AC tại E, đường thẳng qua E song song với AB cắt BC ở F.
Chứng minh
a) AD = EF
b) \(\Delta ADE=\Delta EFC\)
c) AE = EC
d) DE = \(\dfrac{BC}{2}\)
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Qua điểm E kẻ đường thẳng song song với BD cắt AC tại F Gọi K là giao điểm của DE và HF. Chứng minh rằng: KE=2KD
Cho tam giác ABC cân tại A(góc A nhọn). Vẽ AH vuông góc với BC (H thuộc BC). a. Chứng minh tam giác AHB bằng tam giác AHC b. Đường thẳng qua H song song với AB cắt AC tại D. Gọi M là trung điểm của HC. Chứng minh tam giác DHC cân và DM song song với AH.
giúp em câu b
Cho tam giác ABC Qua A kẻ đường thẳng song song với BC ,qua C kẻ đường thẳng song song với AB hai đường thẳng này cắt nhau tại D a. Chứng minh tam giác ABC bằng tam giác ADC b. Chứng minh hai tam giác ADB &CBD bằng nhau c. Gọi O là giao điểm của AC&BD .Chứng minh hai tam giác ABO&COD bằng nhau
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC. Từ H kẻ HD vuông góc AB tại D và HE vuông góc với AC tại E. a/ Chứng minh: tam giac HDB = tam giacHEC b/ Chứng minh : AD=AE. c/ Qua A kẻ đường thẳng xy song song BC, tia HD cắt xy tại M, tia HE cắt xy tại N. Chứng minh tam giác HMN là tam giác cân?
giup tui voii tks nhieuu