Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
Cho tam giác MNP, trung tuyến MK. G là điểm nằm giữa M và K sao cho: MG/MK=1/3. Một đường thẳng đi qua G cắt các cạnh MN, MP thứ tự tại T và S (T, S không trùng với đỉnh của tam giác MNP). CM: MN/MT+MP/MS=6
Cho tam giác ABC có 3 góc nhọn, đường cao AH. I là 1 điểm nằm giữa A và H. Các tia BI, CI cắt cạnh AC, AB tương ứng tại M và N. CHứng minh: HI là tia phân giác của góc MHN
HELP ME
1/Cho hình thang ABCD(AB//CD). Một đường thẳng song song với 2 đáy cắt các cạnh bên thứ tự tại M và N
a)CMinh AM/AD+CN/BC=1
b)Tính NC biết AM=4cm,MD=2cm,BM=6cm
2/Cho tam giác ABC cân tại A(góc A<900), các đường cao AD,CE cắt nhau tại H. Tính BC biết HD4cm,HA=32cm
3/Cho tam giác ABC, 1 đường thảng // với BC cắt các cạnh AB,AC thứ tự tại P và Q.Qua C vẽ đường thẳng // với BQ cắt đường thẳng AB ở R.CMinh AB2=AP.AR
4/Cho tam giác ABC có AB<AC, đường phân giác AD của góc A. Qua trung điểm M của BC vẽ đường thẳng // với AD cắt AC và AB tại H và K.CMinh:
a)AH=AK
b)BK=CH
5/Cho tam giác ABC,AD là phân giác góc A. Đường trung trực của AD cắt BC tại K
a)CMinh AK2=KB=KC
b)Tính KD biết BD=2cm,DC=3cm
cho tm giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)