a: Xét ΔAHB vuông tại H và ΔHAD vuông tại A có
AH chung
HB=AD
Do đó: ΔAHB=ΔHAD
b: Xét tứ giác ADHB có
BH//AD
BH=AD
Do đó: ADHB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ABH}=\widehat{ADH}=25^0\)
=>\(\widehat{ACB}=25^0\)
a: Xét ΔAHB vuông tại H và ΔHAD vuông tại A có
AH chung
HB=AD
Do đó: ΔAHB=ΔHAD
b: Xét tứ giác ADHB có
BH//AD
BH=AD
Do đó: ADHB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ABH}=\widehat{ADH}=25^0\)
=>\(\widehat{ACB}=25^0\)
cho tam giác ABC cân tại A . Lấy điểm D thuộc AC , điểm E thuộc AB sao cho AD =AE
a, c/m BD =CE
b, Gọi I là giao điểm của BD và CE . C/M tam giác BIC cân
c, c/m ED // BC
D, C/M AI vuông BC
e, Các đường thẳng vuông góc vs AB,AC lần lượt tại B và C cắt nhau ở H c/m A,I,H thẳng hàng
Cho tam giác ABC, điểm D nằm giữa A và C (BD không vuông góc với AC). Gọi E và F là chân các đường vuông góc từ A và C đến BD.
Chọn dấu thích hợp: AC <or ≤or ≥or =or > AE + CF
Cho tam giác ABC cân ở A. Kẻ BD vuông góc AC, CE vuông góc với AB (D thuộc AC, e thuộc AB ). Gọi I là giao điểm của BD và CE. Chứng minh :
a) BE=CD
b) AI là tia phân giác của góc BAC
Cho DEF vuông tại D. Tia phân giác của góc E cắt DF tại A. Từ A kẻ AB vuông góc với EF (B thuộc EF) a) Chứng minh EDA = BEA b) Chứng minh DA = AB c) Chứng minh EA là đường trung trực của DB d) Gọi C là giao điểm của tia ED và BA. Chứng minh AC = AF.
cho tam giác abc cân ở a kẻ BD vuông góc AC,CE vuông góc vs AB ( D thuộc AC,E thuộc AB ) gọi I là giao điểm của BD và CE :
a, c/m BE=CD
b, AI là tia phân giác của góc BAC
Cho tam giác ABC ; trên cạnh AB lấy điểm D sao cho AD =1/3 AB . Qua D kẻ đường thẳng song song với BC cắt AC tại E . So sánh DE với BC
Cho A ABC vuông tại A. Tia phân giác của góc B cắt AC tại K. Từ K kẻ KE vuông góc với BC
(E thuộc BC)
a) Chứng minh A ABK = A EBK
b) Chứng minh KA = KE
c) Chứng minh BK là đường trung trực của AE
d) Gọi M là giao điểm của tia EK và BA. Chứng minh MK = KC
ai giúp mi với đg gấp ạ TvT