Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Thu

Cho tam giác ABC co góc B = góc C, kẻ AH vuông góc với BC, H thuộc BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia BC lấy điểm E sao cho BD=CE. Chứng minh:

a) AB=AC

b) Tam giác ABD= tam giác ACE

c) Tam giác ACD= tam giác ABE

d) AH là tia phân giác của góc DAE

e) Kẻ BK vuông góc với AD, CI vuông góc với AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm

Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 19:57

a: Xét ΔABC có \(\widehat{ABC}=\widehat{ACB}\)

nên ΔABC cân tại A

hay AB=AC

b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó:ΔABD=ΔACE

c: Xét ΔACD và ΔABE có

AC=AB

\(\widehat{ACD}=\widehat{ABE}\)

CD=BE

Do đó: ΔACD=ΔABE

d: Ta có: ΔADE cân tại A(AD=AE)

mà AH là đường cao

nên AH là tia phân giác của góc DAE


Các câu hỏi tương tự
Việt Trung
Xem chi tiết
_MIU DevilGamer9_
Xem chi tiết
Đinh Hoàng Bình An
Xem chi tiết
Hoàng Quân Đinh
Xem chi tiết
Bùi Thị Ánh Tuyết
Xem chi tiết
Tuấn Vũ Trần Lê
Xem chi tiết
Tuấn Vũ Trần Lê
Xem chi tiết
Hiếu Đoàn
Xem chi tiết
Quang Minh
Xem chi tiết