cho tam giác ABC có góc A tù. Trong góc A kẻ các tia Ax, Ay lần lượt vuông góc với AB, AC. Trên tia Ax lấy điểm D sao cho AD=AB, trên tia Ay lấy điểm E sao cho AE = AC . Chứng minh rằng CD = BE.
cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD=AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng ΔBOD = ΔCOE
c) Chứng minh: AO là tia phân giác của góc BAC
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
(mng giải giúp em tới bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác ạ, cảm ơn mng nhiều)
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
Cho tam giác ABC có góc B= 2.góc C. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BD lấy điểm E sao cho BE=AC. Trên tia đối của tia CB lấy điểm K sao cho CK=AB . Chứng minh rằng : AE = AK
Cho tam giác ABC có 3 góc nhọn. Kẻ AH vuông góc với BC. Vẽ HI và HK lần lượt vuông góc với AB, AC. Trên tia đối của tia IH, KH lần lượt lấy các điểm E và F sao cho IE = IH và KF = KH.
a. Chứng minh tam giác AIE = tam giác AIH
b. Chứng minh AE = AF
c. Cho góc BAC = 45 độ, tính góc EAF.
Cho tam giác ABC. Về phía ngoài của tam giác vẽ tia Ai sao cho Ax ⊥ AB, vẽ tia Ay ⊥ AC. Trên tia Ax lấy điểm D sao cho AD =AB, trên tia Ấy lấy điểm E Sao cho AE = AC. Chứng minh :
a) DC = BE
b) DC⊥BE
Cho tam giác ABC có AB<AC và D là trung điểm AC. Trên tia đối của tia DB lấy điểm E sao cho DE=DB
a, Chứng minh tam giác ADE = tam giác CDB và AE//BC
b, Từ E kẻ Ex vuông góc với AC tại M. Trên tia Ex lấy điểm N sao cho M là trung điểm EN. Chứng min DN=BD
c, Chứng minh BN vuông góc Ex
Cho ∆ABC có AB < AC. Tia phân giác của góc A cắt BC tại D. Trên AC lấy điểm E sao cho AB = AE. Gọi I là giao điểm của AD và BE.
a) Chứng minh rằng: ∆AIB = ∆AIE.
b) Chứng minh: AD ⊥ BE.
c) Vẽ IF là tia đối của tia IA sao cho IF =IA. Chứng minh rằng: AB // EF.
d) Qua A vẽ AH ⊥AB sao cho AH = AB và vẽ AK⊥AC sao cho AK = AC (H và K nằm khác phía đối với AD). Chứng minh rằng BK = CH.