Bài 3. Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho tam giác \(ABC\) có đường phân giác \(AD\). Vẽ đường thẳng qua \(B\) song song với \(AD\) và cẳ đường thẳng \(AC\) tại \(E\) (Hình 1). Hãy giảu thích tại sao:

a) Tam giác \(BAE\) cân tại \(A\).

b) \(\frac{{DB}}{{DC}} = \frac{{AE}}{{AC}} = \frac{{AB}}{{AC}}\).

Hà Quang Minh
13 tháng 9 2023 lúc 22:20

a) Vì \(BE//AD\) nên \(\widehat {EBA} = \widehat {BAD}\) (cặp góc so le trong)  (1)

Vì \(BE//AD\) nên \(\widehat {BEA} = \widehat {DAC}\) (cặp góc đồng vị)   (2)

Vì \(AD\) là tia phân giác nên \(\widehat {BAD} = \widehat {DAC}\) (tính chất)  (3)

Từ (1); (2); (3) suy ra \(\widehat {EBA} = \widehat {AEB}\) (tính chất bắc cầu)

Xét tam giác \(BAE\) có:

\(\widehat {EBA} = \widehat {AEB}\) (chứng minh trên)

Nên tam giác \(BAE\) cân tại \(A\).

b) Vì \(BE//AD\) nên \(\frac{{BD}}{{DC}} = \frac{{AE}}{{AC}}\).

Mà tam giác \(BAE\) cân tại \(A\) nên \(AE = AB \Rightarrow \frac{{AE}}{{AC}} = \frac{{AB}}{{AC}}\) (định lí Thales)

Do đó, \(\frac{{DB}}{{DC}} = \frac{{AE}}{{AC}} = \frac{{AB}}{{AC}}\) (điều phải chứng minh).

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 22:21

a: AD//BE

=>góc CAD=góc CEB và góc BAD=góc ABE

mà góc CAD=góc BAD

nên góc CEB=góc ABE

=>ΔBAE cân tại A

b: ΔBAE cân tại A

=>AB=AE

=>AB/AC=AE/AC

mà AE/AC=BD/DC(ΔCEB có AD//BE)

nên AB/AC=AE/AC=DB/DC


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết