+Xét tứ giác ANHM:
AMH^ = 90o (HM _|_ AB)
ANH^ = 90o (HN _|_ AC)
=> AMH^ + ANH^ = 180o => tứ giác ANHM nội tiếp
+ Ta có: AMN^ = AHN^ (cùng chắn cung AN của (ANHM))
AHN^ = ACB^ (cùng phụ HNC^)
=> AMN^ = ACB^
+Xét tam giác AMN và tam giác ACB:
A^ chung (gt);
AMN^ = ACB^ (cmt)
=> tam giác AMN đồng dạng tam giác ACB (g.g)
\(\Rightarrow\dfrac{AM}{AN}=\dfrac{AC}{AB}\Rightarrow AB\cdot AM=AN\cdot AC\left(đpcm\right)\)