Cho tam giác ABC vuông tại A có ABC = 60°.a) Tính số đo góc BCA.b) Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Chứng minh tam giác ADB = tam giác EDB và DE vuông góc với BC.c) Trên tia BA lấy điểm M sao cho BM = BC. Chứng minh Ba điểm E, D, M thẳng hàng .
Cho tam giác ABC vuông tại A có góc ABC=60độ.
a)Tính số đo góc ACB và so sánh độ dài hai cạnh AB, AC
b) Gọi M là trung điểm AC. Kẻ đường thẳng vuông góc với AC tại M, đường thẳng này cắt BC tại N, Chứng minh tam giác AMN= tam giác CMN
c)Chứng minh tam giác ABN là tam giác đều
d)Gọi G là giao điểm của AN và BM, Chứng minh BC=6.GN
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC
cho tam giác abc có ab=6cm ac=8cm bc=10cm
a) hãy chứng minh abc là tam giác vuông
b) trên cạnh bc lấy e sao cho be=ba kẻ ed vuông góc ac (d thuộc ac)
chứng minh rằng bd là tia phân giác của b
c) gọi f là giao điểm của ed và ba .chứng minh rằng tam giác dec = tam giác daf từ đó suy ra df> de
d) cmr:ad vuông góc với cf
cho tam giác ABC vuông tại A , góc B = 60 độ . Tia phân giác của góc B cắt AC tại I
a) Tính góc C , góc ABI , góc CBI
b) Trên cạnh BC lấy điểm D sao cho AB= BD . Chứng minh tam giác ABI = tam giác DBI suy ra DI vuông góc với BC
c) Chứng minh D là trung điểm của BC
d) AB cắt DI tại K . Chứng minh tam giác KIC cân
e) Chứng minh AD// KC
g) gọi M là trung điểm của KC . Chứng minh B, I , M thẳng hàng
Cho tam giác ABC có góc A nhỏ hơn 90 độ . Vẽ ra phía ngoài của tam giác đó hai đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC . Gọi H là trung điểm của BC .
Chứng minh rằng tia HA vuông góc với DE
cho tam giác ABC có AB =Ac ,AD là tia phan giác của góc BAC 'D e BC
a. cm tam giác ADB = tam giác ADC
b. trên AB và AC lần lượt lấy 2 điểm M,N sao ch AM=AN cm AD vuông góc vs MN
c. Gọi O là trung điểm của BM . trên tia đối của OD lấy điểm P sao cho OD=OP cm p'm'n thẳng hàng
ho tam giác abc vuông tại a, có góc acb = 30 độ, đường vuông góc kẻ từ a cắt bc tại h. trên đoạn hc lấy điểm d sao cho hd=hb câu a/ chứng minh tam giác ahb=tam giác ahd câu b/ chứng minh tam giác abd là tam giác đều câu c/ từ c kẻ ce vuông góc với ad, (e thuộc ad). chứng minh de=hb câu d/ kẻ df vuông góc với ac, (f thuộc ac); gọi i là giao điểm của ce và ah. chứng minh: i, d, f thẳng hàng.
Cho tam giác ABC vuông tại A có AB = BC Gọi H là trung điểm của BC chứng minh tam giác ahb bằng tam giác ACh chứng minh góc bah= góc ach trên tia đối của tia ah lấy điểm e sao cho ae = bc trên tia đối của tia ca lấy điểm f sao cho cf = ab chứng minh be = bf và be vuông góc với bf