+)Xét tam giác AME và tam giác CBE có :
ME=EC(gt)
góc MEA = góc CEA(đđ)
AM=BM(gt)
Do đó : tam giác AME=tam giác CME (c.g.c)
Suy ra MA =BC(2 cạnh tương ứng )(1)
góc MAE = góc CBE (2 góc tương ứng )
=> MA // BC(3)
+)Xét tam giác ADN và tam giác CDB có:
BD=DN(gt)
góc ADN = góc CDB(đđ)
AD=DC(gt)
Do đó : tam giác ADN = tam giác CDB (c.g.c)
Suy ra AN = BC(2 cạnh tương ứng )(2)
góc NAB = góc BCD (2 góc tương ứng )
=> AN//BC(4)
Từ (3) và(4) suy ra 3 điểm M , A , N thẳng hàng
=> MN=MA+NA
Từ (1) và(2) suy ra BC=MA=NA
=> BC =\(\dfrac{MA+NA}{2}\)=\(\dfrac{MN}{2}\)
Hay MN = 2BC (ĐPCM)