a) Xét ΔCAI vuông tại I và ΔCBI vuông tại I có
CA=CB(ΔABC cân tại C)
CI chung
Do đó: ΔCAI=ΔCBI(cạnh huyền-cạnh góc vuông)
Suy ra: IA=IB(hai cạnh tương ứng)
b) Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB(cmt)
\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔBAC cân tại C)
Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)
Suy ra: IH=IK(hai cạnh tương ứng)
c) Ta có: IA=IB(cmt)
mà IA+IB=AB(I nằm giữa A và B)
nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:
\(CA^2=CI^2+AI^2\)
\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)
hay CI=8(cm)
Vậy: IC=8cm