Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Ngọc Phương Nghi

Cho tam giác ABC, có BM=MC

 CM: AB+ AC2 = 2AM2 + BC2/2 

thanh ngọc
10 tháng 8 2016 lúc 15:50

-Kẻ BH vuông góc với AM; CK vuông góc với AM(H,K thuộc AM). => BHCK là hình bình hành 
=> BH= CK; M là trung điểm của BC nên cũng là trung điểm của HK.
-Áp dụng định lý Pytago vào tam giác AHB vuông tại H; tam giác BHM vuông tại H; tam giác AKC vuông tại K, ta có: AH^2+ BH^2=AB^2.
BH^2+HM^2=BM^2.
AK^2+KC^2=AC^2.
-Từ các điều ở trên ta có : BH^2+HM^2= (BC/2)^2.
=> 4.BH^2+4.HM^2 =BC^2.
=> 2.BH^2= (BC^2)/2 -2.HM^2.
=> 2.BH^2+4.HM^2= 2.HM^2+ (BC^2)/2.
=> 2.BH^2+2.AH^2 +4.HM^2+ 4.AH.HM= 2.AH^2+ 2.HM^2+ 4.AH.HM+ (BC/2)^2.
=> BH^2+CK^2+ AH^2+( AH^2+4.HM^2+ 4.AH.HM) =2.(AH^2+ HM^2+2.AH.HM) +(BC/2)^2.
=> BH^2+ AH^2+ CK^2+(AH^2+ HK^2+ 2.AH.HK) = 2.AM^2+ (BC/2)^2.
=> AB^2+ (CK^2+ AK^2)= 2.AM^2 + (BC/2)^2.
=> AB^2+AC^2= 2.AM^2 + (BC/2)^2 (đpcm). 

Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 16:08

A B C M H Đề bài đúng phải là 

Từ A dựng đường cao AH vuông góc với BC tại H

Ta có : \(AB^2=AH^2+BH^2=\left(AM^2-MH^2\right)+BH^2\)

\(=AM^2-\left(MH^2-BH^2\right)=AM^2-\left(MH-BH\right)\left(MH+BH\right)\)

\(=AM^2-\left(MH-BH\right).BM=AM^2-\frac{BC}{2}\left(MH-BH\right)\)

\(AC^2=AH^2+HC^2=\left(AM^2-HM^2\right)+HC^2\)

\(=AM^2-\left(HM^2-HC^2\right)=AM^2-\left(HM-HC\right)\left(HM+HC\right)\)

\(=AM^2+\left(HC-HM\right).\left(HM+HC\right)\)

\(=AM^2+\frac{BC}{2}.\left(HM+HC\right)\)

\(\Rightarrow AB^2+AC^2=2AM^2-\frac{BC}{2}\left(MH-BH-MH-CH\right)\)

\(=2AM^2-\frac{BC}{2}.\left(-BC\right)=2AM^2+\frac{BC^2}{2}\)

 

 


Các câu hỏi tương tự
Dương Lê
Xem chi tiết
Phạm Minh Anh
Xem chi tiết
Nguyễn Ngọc Huyền Anh
Xem chi tiết
Dương Lê
Xem chi tiết
Bokura ga ita
Xem chi tiết
Vy thị thanh thuy
Xem chi tiết
belphegor
Xem chi tiết
Dương Thành
Xem chi tiết
Thái Minh Hà
Xem chi tiết