Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE=1/2xBC=4cm
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE=1/2xBC=4cm
Tam giác ABC cân tại A, gọi M là trung điểm của BC. Biết AM = 8cm, AB = 10cm
a) Tính độ dài BC
b) Chứng minh AM vuông góc BC
c) Từ điểm D nằm giữa A và M. Kẻ DE⊥AB (E∈AB); DF ⊥AC (F∈AC); Chứng minh: DE=DF
d) Qua A kẻ đường thẳng d song song BC. Gọi I, H lần lượt là giao điểm của DE, DF với đường thẳng d. Chứng minh tam giác DIK cân
e) Giả sử góc IDK = 130° tính góc DIK = ? góc DKI = ?
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Qua điểm E kẻ đường thẳng song song với BD cắt AC tại F Gọi K là giao điểm của DE và HF. Chứng minh rằng: KE=2KD
Cho tam giác ABC.Gọi D là trung điểm của AB, đường thẳng song song với BC kẻ qua D cắt AC tại E. Đường thẳng song song với AB kẻ qua E cắt BC tại K.
a)C/m tam giác DBK=tam giác KED
b)C/m AE=EC
c)Gọi I là trung điểm của DE. C/M I là trung điểm của AK
Cho △ABC vuông tại A . Gọi D là điểm thuộc cạnh BC sao cho Bd = BA và H là trung điểm của AD . Tia BH cắt AC tại E . Tia DE cắt tia BA tại M . Chứng minh :
a, △ABH = △DBH
b, △AED cân
c, Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh KD = 2KE
Cho △ABC vuông tại A . Gọi D là điểm thuộc cạnh BC sao cho Bd = BA và H là trung điểm của AD . Tia BH cắt AC tại E . Tia DE cắt tia BA tại M . Chứng minh :
a, △ABH = △DBH
b, △AED cân
c, Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh KD = 2KE
Cho △ABC vuông tại A . Gọi D là điểm thuộc cạnh BC sao cho Bd = BA và H là trung điểm của AD . Tia BH cắt AC tại E . Tia DE cắt tia BA tại M . Chứng minh :
a, △ABH = △DBH
b, △AED cân
c, Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F . Gọi K là giao điểm của DE và HF . Chứng minh KD = 2KE
Cho tam giác ABC Qua A kẻ đường thẳng song song với BC ,qua C kẻ đường thẳng song song với AB hai đường thẳng này cắt nhau tại D a. Chứng minh tam giác ABC bằng tam giác ADC b. Chứng minh hai tam giác ADB &CBD bằng nhau c. Gọi O là giao điểm của AC&BD .Chứng minh hai tam giác ABO&COD bằng nhau
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC. Từ H kẻ HD vuông góc AB tại D và HE vuông góc với AC tại E. a/ Chứng minh: tam giac HDB = tam giacHEC b/ Chứng minh : AD=AE. c/ Qua A kẻ đường thẳng xy song song BC, tia HD cắt xy tại M, tia HE cắt xy tại N. Chứng minh tam giác HMN là tam giác cân?
giup tui voii tks nhieuu
Cho tam giác ABC, D là trung điểm của AB. Qua D kẻ đường thẳng song song với BC cắt AC ở E. Qua E kẻ đường thẳng song song với AB cắt BC tại F.CMR:
a)AD=EF
b)Tam giác ADE bằng tam giác EFC
c)AE=EC,BF=FC
cho tam giác ABC. D là trung điểm AB. Qua D kẻ đường thẳng song song với BC cắt AC ở E. Qua E kẻ đường thẳng song song với AB cắt BC ở E. Chứng minh rằng:
a) AE=EC và BF FC
b) DE=\(\frac{1}{2}\)BC và EF =\(\frac{1}{2}\)AB