Bài 2: Tỉ số lượng giác của góc nhọn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quyền Thu Hương

cho tam giác ABC có BC = a , CA=b, AB=c

CMR sin\(\dfrac{A}{2}\) < hoặc = \(\dfrac{a}{b+c}\)

sin\(\dfrac{A}{2}\) . sin \(\dfrac{B}{2}\) . sin\(\dfrac{C}{2}\)< hoặc = \(\dfrac{1}{8}\)

Akai Haruma
21 tháng 7 2017 lúc 10:38

Lời giải:

Theo hệ thức lượng trong tam giác:\(\sin ^2a=\frac{1-\cos 2a}{2}\)

Áp dụng vào bài toán và sử dụng định lý hàm cos:

\(\sin ^2\frac{A}{2}=\frac{1-\cos A}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-(b-c)^2}{4bc}\)

Ta cần CM \(\frac{a^2-(b-c)^2}{4bc}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow (ab+ac)^2-(b^2-c^2)^2\leq 4a^2bc\)

\(\Leftrightarrow a^2b^2+a^2c^2\leq 2a^2bc+(b^2-c^2)^2\)

\(\Leftrightarrow (b^2-c^2)^2-a^2(b-c)^2\geq 0\Leftrightarrow (b-c)^2[(b+c)^2-a^2]\geq 0\)

BĐT luôn đúng do với \(a,b,c\) là độ dài ba cạnh tam giác thì \(b+c>a\leftrightarrow (b+c)^2>a^2\)

Vậy \(\sin ^2\frac{A}{2}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow \sin \frac{A}{2}\leq \frac{a}{b+c}\) (đpcm)

Tương tự : \(\sin \frac{B}{2}\leq \frac{b}{a+c},\sin \frac{C}{2}\leq \frac{c}{a+b}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{abc}{(a+b)(b+c)(c+a)}\)

Theo BĐT AM-GM: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\Rightarrow \frac{abc}{(a+b)(b+c)(c+a)}\leq \frac{1}{8}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{1}{8}\) (đpcm)

Quyền Thu Hương
19 tháng 7 2017 lúc 21:45

@Akai Haruma giúp mình với


Các câu hỏi tương tự
Lăng Hàn Vũ
Xem chi tiết
Việt Tuân Nguyễn Đặng
Xem chi tiết
Thảo My
Xem chi tiết
Lê khắc Tuấn Minh
Xem chi tiết
Alex Ich
Xem chi tiết
ta kim linh dan
Xem chi tiết
Neko Chan
Xem chi tiết
đặng thị phương thảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết