a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
=>AB=DC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
mà M\(\in\)AD
nên AD\(\perp\)BC
c: Ta có: AB=CD
AB=AC
Do đó: CD=CA
=>ΔCDA cân tại C
=>\(\widehat{CAD}=\widehat{CDA}=30^0\)
Ta có: ΔABC cân tại A
mà AD là đường cao
nên AD là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{CAD}=60^0\)