cho tam giác ABC vuông tại A, D là trung điểm BC. từ D kẻ DE vuông góc AB(E thuộc AB), kẻ DF vuông góc AC(F thuộc AC)
a, chứng minh tứ giác AEDF là HCN
b, gọi I là điểm đối xứng với D qua F. chứng minh tứ giác ABDI là hình bình hành
c, kẻ AH vuông góc BC(H thuộc BC). chứng minh: AD2=EH2+HF2
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
ho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Gọi M, N, P là trung điểm của các cạnh AB, AC, BC, MN cắt AC tại I. a) Chứng minh I là trung điểm của AH b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành. c) Xác định dạng của tứ giác MHPN d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc AB, DF vuông góc AC
a) Chứng minh DA = DF
b) Chứng minh tứ giác AHEF là hình bình hành và tứ giác AHBD là hình thoi
c) Trên tia đối của tia FD lấy I sao cho FI = FD. Chứng minh I đối xứng với H qua A
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 1. Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 2: Cho hình chữ nhật MNPQ. Gọi A là chân đường vuông góc hạ từ P đến NQ. Gọi B;C; D lần lượt là trung điểm của PA; AQ; MN.
a) Chứng minh rằng: BC//MN
b) Chứng minh rằng tứ giác CDNB là hình bình hành
c) Gọi E là giao điểm của NB và PC, gọi F là chân đường vuông góc hạ từ D đến NB. Chứng minh rằng tứ giác FDCE là hình chữ nhật
d) Hạ CG vuông góc với MN tại G; BC cắt NP tại H, chứng minh rằng DB cắt GH tại trung điểm mỗi đường.
Bài 3: Cho hình bình hành ABCD có AB = 8 cm, AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c. Chứng minh IK // CD
Cho tam giác ABC vuông tại A, AB < AC; AD là phân giác, Vẽ DE⊥AB tại E, DF⊥AC tại F.
a) Tứ giác AEDF là hình gì?
b) Qua D, vẽ đường thẳng m ⊥ BC, m cắt AC tại K. Chứng minh: DK = DB
Please cho mình cả hình nữa ạ. Help me pleaseeeee
Câu 6: Cho tam giác ABC, đường cao AH. D là một điểm bất kì trên cạnh BC. Qua D kẻ các đường thẳng song song với AB và AC, chúng cắt các cạnh AC và AB theo thứ tự ở E và F.
1/ Chứng minh: Tứ giác AEDF là hình bình hành.
2/ Hai đường chéo AD và EF cắt nhau tại O. Chứng minhAOH cân.