XétΔABC có \(AB^2+AC^2=CB^2\)
nên ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{IBC}+\widehat{ICB}=45^0\)
hay \(\widehat{BIC}=135^0\)
XétΔABC có \(AB^2+AC^2=CB^2\)
nên ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{IBC}+\widehat{ICB}=45^0\)
hay \(\widehat{BIC}=135^0\)
cho tam giác ABC có AB= 6cm , AC =8cm, BC = 10cm
Ke phân giác BD, CE (D thuộc AC, E thuộc AB). BD và CE cắt nhau tại I. Tính số đo góc BIC
cho tam giác ABC có góc A=60 độ. Kẻ BD, CE là phân giác góc B và góc C. D thuộc AC, E thuộc AB. BD và CE cắt nhau tại I
a, Tính góc BIC
b, BE+CD=BC
giúp mik nhanh nha, mik cần gấp lắm
Cho tam giác ABC có góc  = 60 độ. Kẻ BD, CE là các tia phân giác của B và C ( D\(\in\)AC, E\(\in\)AB). BD và CE cắt nhau tại I. Tính góc BIC
Cho tam giác ABC có AB=BC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC), (E thuộc AB). Gọi O là giao điểm của BD và CE. CM:
a) BD=CE ;
b) Tam giác OEB = Tam giác ODC ;
c) Ao là phân giác của góc BAC.
Giải theo trường hợp bằng nhau t2 của tam giác : cạnh góc cạnh giúp mk nhé!
Cho tam giác ABC có góc A<90 độ và AB=AC. Kẻ BD và CE tương ứng vuông góc với AC ( điểm D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng:
a) BD=CE
b) OE=OD và OB=OC
c) AO là phân giác của góc BAC
cho tam giác ABC có AB=AC . Kẻ BD vuông với AC ; CEvuông góc với AB ( Dthuộc AC ; E thuộc AB).Gọi O là giao điểm của BD và CE chứng minh:
a) BD=CE?
b) Tam giác OEB = tam giác ODC?
c) AO là tia phân giác của góc BAC?
d) Gọi K là trung điểm của BC . CM A,O,K thẳng hàng
Cho tam giác ABC có AB=AC,kẻ BD vuông góc với AC ,CE vuông góc với AB(D thuộc AC E thuộc AB ).Gọi O là giao điểm của BD và CE.Chứng minh:
a/BD=CE
b/tam giác OEB=tam giác ODC
c/AO là tia phân giác của góc BAC
(bạn nào tốt bụng vẽ hình dùm mình nha)
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho ΔABC có AB=AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC; E thuộc AB) Gọi O là giao điểm của BD và CE. Chứng minh
a)BD=CE
b)ΔOEB=ΔODC
C)AO là tia phân giác của góc BAC