Cho tam giác ABC có AB = 5, AC = 6, \(\widehat{A}=90^o+\frac{\widehat{B}}{2}\). Khi đó BC = ...
Cho tam giác ABC có \(AB=\sqrt{5}cm,AC=3cm\) và \(\widehat{B}+2\widehat{C}=90^o\), khi đó \(\sin C\) có giá trị bằng...
1 . Cho a,b,c thực dương t.m: a+b+c=2
CMR: \(P=\frac{ab}{\sqrt{\left(ab+2c\right)}}+\frac{bc}{\sqrt{\left(bc+2a\right)}}+\frac{ca}{\sqrt{\left(ca+2b\right)}}\le1\)
2 . Cho tam giác ABC nhọn có góc BAC> góc ACB. Đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại M,N,E. Gọi K là giao điểm của BO và NE. Chứng minh
a ) \(\widehat{AOB}=90^0+\frac{\widehat{ACB}}{2}\)
b )
b) 5 điểm A, M, K, O, E cùng thuộc một đường tròn
c Gọi T là giao điểm BO với AC. Chứng minh: KT.BN = KB.ET
Cho tam giác ABC , BC=a ,AC=b, AB=c. Cmr sin\(\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC vuông tại A ( AB<AC ) , đường tròn (O;R) nội tiếp tam giác , I là trung điểm của BC , Biết \(\widehat{BOI}=90^O\)
CMR) a) AB + AC - BC = 2r
b) AB + BC = 2AC
c) Tính tỉ số AB/AC ??
Cho tam giác ABC có AB < AC, nội tiếp (O) có BC là đường kính. Kẻ đường cao AH của (O)
a) Cho AB = 6, AC = 8. Tính AH và BH
b) Tiếp tuyến tại A của (O) cắt tiếp tuyến tại B và C lần lượt tại M và N. CMR: MN = MB + NC và \(\widehat{MON}=90^o\)
c) Trên cạnh AC lấy E sao cho AB = AE. Gọi I là trung điểm BE. CMR: M, I, O thẳng hàng
d) CMR: HI là phân giác của \(\widehat{AHC}\)
Cho tam giác ABC , \(\widehat{B}=2\widehat{C}\) và \(CB=2AB\) . Tính các góc của tam giác đó .
Cho tứ giác ABCD có \(\widehat{A}=\widehat{B}=90^0,AB=6,BC=2,AD=3.\)Tính góc nhọn tạo bởi 2 đường chéo của tứ giác