a: Xet ΔABC có
AM vừa là đường phân giác, vừa là trung tuyến
=>ΔABC cân taiA
b: MB=MC=8cm
=>AM=15cm
a: Xet ΔABC có
AM vừa là đường phân giác, vừa là trung tuyến
=>ΔABC cân taiA
b: MB=MC=8cm
=>AM=15cm
Cho tam giác ABC có AB=AC , M là trung điểm của BC
a) Chứng minh tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc với BC
c) Gọi I là trung điểm của AM , trên tia BI lấy điểm H sao cho BI=IH. Chứng minh AH song song với BC
d) Qua M kẻ đường thẳng song song với AC cắt đường thẳng AH tại K . Chứng minh A là trung điểm của HK
( trình bày giúp mình câu c,d thôi ạ )
Tam giác ABC có AB = AC, M là trung điểm của BC. Chứng minh tam giác amb=tam gaics amc chứng minh am là tia phân giác của góc bac đương thẳng đi qua b vuông góc vói ba cắt đường thẳng am tại i chúng minh ci vuông góc với ca
Cho tam giác ABC có AB =AC Gọi M là trung điểm của BC
a)Chứng minh rằng tam giác AMB= tam giác AMC
b)Chứng minh rằng AM là tia phân giác của góc BAC
c)Đường thẳng đi qua B vuông góc với BA cắt đường thẳng AM tại I.Chứng minh rằng CI vuông góc với CA
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Tam giác ABC cân tại A, gọi M là trung điểm của BC. Biết AM = 8cm, AB = 10cm
a) Tính độ dài BC
b) Chứng minh AM vuông góc BC
c) Từ điểm D nằm giữa A và M. Kẻ DE⊥AB (E∈AB); DF ⊥AC (F∈AC); Chứng minh: DE=DF
d) Qua A kẻ đường thẳng d song song BC. Gọi I, H lần lượt là giao điểm của DE, DF với đường thẳng d. Chứng minh tam giác DIK cân
e) Giả sử góc IDK = 130° tính góc DIK = ? góc DKI = ?
cho tam giác ABC có AB=AC. Lấy M thuộc AB và N thuộc AC sao cho AM=AN. Gọi O là giao điểm của BN và CM.
a, Chứng minh tam giác ABN bằng tam giác ACM b, Chứng minh góc BMC bằng góc BNC vàOB=OC c, Gọi F là trung điểm của BC. Chứng minh A, O, F thẳng hàngBài 4. Cho tam giác ABC cân tại A có AB cm = 5 , BC cm = 6 . Vẽ AH là tia phân giác của góc BAC ( H thuộc BC ). a) Chứng minh: = ABH ACH . b) Tính AH ? c) Gọi G là trọng tâm của tam giác ABC . Tính GH ?
Bài 5. Cho tam giác MNP cân tại P có PM cm = 5 , MN cm = 6 . Vẽ PH là tia phân giác của góc MPN ( H thuộc MN ). a) Chứng minh: = MPH NPH . b) Tính PH ? c) Gọi G là trọng tâm của tam giác MNP . Tính HG
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC. Tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC (đã chứng minh). Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD, CN vuông góc với BD (đã chứng minh). Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC có góc A =90 Độ và đường phân giác BH (H thuộc AC ). Kẻ HM vuông góc với BC (M thuộc BC) gọi N là giao điểm của AB và MH . chứng minh a) tam giác ABH bằng tam giác MBH b) BH là đường trung trực của đoạn thảng AM c) AM song song CN d)BH vuông góc CN