cho tam giác cân ABC ( AB = AC ) từ điểm M tùy ý trên cạnh BC , kẻ MD , MF lần lượt vuông góc với AB và AC kẻ đường cao BA của tam giác ABC , gọi D' là điểm đối xứng của D qua BC . Chứng minh :
a) tính góc BD'M
b) MD+MF= BH
Cho tam giác đều ABC trên cạnh BC lấy điểm M, kẻ MD // AC kẻ ME // AB
a, Chứng minh ADME là hình bình hành
b, Gọi O là trung điểm của DE. Chứng minh A, O, M thẳng hàng
c, Kẻ MI vuông góc với AB, MK vuông góc với AC. Tính số đo góc IOK
Cho tam giác ABC vuông tại A(AB<AC),đường cao AH. Trên cạnh AC lấy điểm E sao cho AE=AB.Gọi M là trung điểm của BE. CMR: HM là tia phân giác góc AHC.
1. Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từB cắt đường thẳng vuông góc với AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
c. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng
cho tam giác ABC có góc A=90 , AB=10 cm . gọi D là trung điểm của BC. gọi M là điểm đối xứng với D qua AB . E là giao điểm của DM và AB. Kẻ DF vuông góc với AC ( F thuộc AC )
a) tính độ dài DF
b) chứng minh tứ giác ADBM là hình thoi
c) tam giác ABC có điều kiện gì để tam giác AEDF là hình vuông
Mn giúp mk vs ạ...cảm ơn .....
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của BC. Từ D kẻ DM vuông góc với AB(M thuộc AB), DN vuông góc với AC (N thuộc AC). Trên tia DN lấy điểm E sao cho N là trung điểm của DE.
a,Tứ giác AMDN là hình gì? Vì sao?
b,Chứng minh: N là trung điểm AC.
c, Tứ giác ADCE là hình gì ? Vì sao?
d, Tam giác ABC cần có thêm điều kiện gì để tứ giác ABCE là hình thang cân
1) cho ΔABC đều có cạnh =3m
a) tính diện tích ΔABC
b) lấy M nằm trong tam giác ABC. vẽ MI, MJ, MK lần lượt vuông góc với AB,AC,BC. hãy tính MI+MJ+MK
2) cho ΔABC. hạ AD vuông góc với đường phân giác trong của góc B tại D, hạ AE vuông góc với đường phân giác ngoài của goác B tại E.
a) c/m tứ giác ADBE là hình chữ nhật.
b) tìm điều kiện của ΔABC để tứ giác ADBE là hình vuông.
c) c/m DE//BC
Cho tam giác ABC có 3 góc nhọn , trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D.
1) Chứng minh tứ giác BHCD là hình bình hành.
2) Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2 OM = AH
3) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng.
Cho tam giác ABC vuông tại A có AB=6cm. AC=7cm. đường trung tuyến AD(D thuộc BC)
a, tính AD
b, kẻ DH vuông góc AB(H thuộc AB), DK vuông góc AC (K thuộc AC). Chứng minh AHDK là hcn
c, Khi tứ giác AHDK là hình vuông thì cm \(\frac{1}{AC}+\frac{1}{AB}=\frac{1}{DH}\)