Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngân Hoàng Trường

Cho tam giác ABC có 3 góc nhọn , trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D.
1) Chứng minh tứ giác BHCD là hình bình hành.
2) Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2 OM = AH
3) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng.

Dennis
11 tháng 1 2017 lúc 21:30

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok


Các câu hỏi tương tự
Lê Phương Anh
Xem chi tiết
Bầu Trời Rộng Lớn
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Đào Phương Duyên
Xem chi tiết
Nguyễn Thị Huyền
Xem chi tiết
Phạm Quang Minh
Xem chi tiết
Khánh Linh Đỗ
Xem chi tiết
Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết