1. Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từB cắt đường thẳng vuông góc với AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
c. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng
trực tâm ở cạnh nào hay góc nào bạn?
có trực tâm chính xác sẽ làm dễ hơn
Bạn xem lại đề xem có nhầm không nhé! Vì:
Nếu BHCD hbh thì CD//HB (1)
Mặt khác: A,C,D thẳng hàng mà AC\(\perp\)BH => CD\(\perp\)HB (2)
Từ (1) và (2) => Mâu thuẫn
Bạn có thể tham khảo bài này tại địa chỉ này:
Sách: nâng cao & phát triển toán 7 - tập 2, phần hình học, trang 65, bài 182