1: góc MDC=1/2*sđ cung CM=90 độ
góc BDC=góc BAC=90 độ
=>BADC nội tiếp
2: góc DEM=góc DCA
góc DCA=góc AEM
=>góc DEM=góc AEM
=>EM là phân giác của góc AED
1: góc MDC=1/2*sđ cung CM=90 độ
góc BDC=góc BAC=90 độ
=>BADC nội tiếp
2: góc DEM=góc DCA
góc DCA=góc AEM
=>góc DEM=góc AEM
=>EM là phân giác của góc AED
cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
Cho đường trong tâm O , đg kính bc . Lấy điểm A trên cung bc sao cho ab<ac . Trên oc lấy D từ D kẻ đg thẳng vuông góc với bc cắt ac tại e .
a, chứng minh abde là tứ giác nội tiếp
b, chứng minh góc dae bằng góc dbe
c, đường cao ah của tam giác abc cắt đg tròn tại f . Chứng minh hf.dc = hc.ed
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
Cho tam giác ABC nhọn AB <AC , đường cao AH .M,N là hình chiếu của H trên AB,AC . MN cắt BC tại D . Trên nửa mp bờ BC chứa A vẽ nửa đường tròn đường kính CD . Qua B kẻ đường vuông góc với CD cắt nửa đường tròn tại E. Gọi O là tâm đường tròn ngoại tiếp tam giác MNE . Cm: OE vuông góc DE
2. cho đường tròn tâm O bán kính OR có đường kính CD . Điểm E là điểm bất kì trên (O) (E∈C,D) trong đường tròn (O) tiếp tuyến tại E cắt tiếp tuyến tại C,D lần lượt tại I,J
a, CM; tứ giác OCIE nội tiếp