Bài 20. Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC với (O), (với B và C là các tiếp điểm).
a)Chứng minh tứ giác OBAC nội tiếp
b)Chứng minh OA vuông góc BC tại H
c)Trên BH lấy điểm D, kẻ đường thẳng vuông góc với OD tại D cắt các tiếp tuyến AB và AC tại E và F. Chứng minh DE = DF
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho điểm C nằm trên nửa đường tròn (O) với đường kính AB sao cho cung AC lớn hơn cung BC (C≠B). Đường thẳng vuông góc với AB tại O cắt dây AC tại D. Chứng minh tứ giác BCDO nội tiếp
Cho đường tròn (O) đường kính AB, gọi I là trung điểm của OA, dây CD vuông góc với AB tại I. Lấy K tùy ý trên cung BC nhỏ, AK cắt CD tại H.
a) Chứng minh tứ giác BIHK nội tiếp
b) Chứng minh AH.AK có giá trị không phụ thuộc vị trí điểm K
c) Kẻ DN ⊥ CB , DM ⊥ AC. Chứng minh các đường thẳng MN, AB, CD đồng quy
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh :AD vuông góc BCvà AH.AD=AE.AC
b) Chứng minh : góc EOC = góc EFD
Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE,AECF nội tiếp.
b)góc AFE= ACE.