a) Xét tứ giác KECD có
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối
\(\widehat{KEC}+\widehat{KDC}=180^0\)
Do đó: KECD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác KECD có
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối
\(\widehat{KEC}+\widehat{KDC}=180^0\)
Do đó: KECD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
Cho tam giác ABC có ba góc nhọn. Đường cao BD và Ck cắt nhau tại H.
a)Chứng minh tứ giác ADHK nội tiếp được trong một đường tròn
b)Chứng minh tam giác AKD và tam giác ADB đồng dạng.
c)Kẻ tiếp tuyến Dx tại của đường tròn tâm O đường kính BC cắt AH tại M. Chứng minh là M trung điểm của AH.
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
cho tam giác nhọn ABC nôi tiếp đường tròn tâm O, các đường cao AM,BN,CP căt nhau tại H. a. cm tứ giác ANHP nội tiếp b. kẻ đường kính AD của đường tròn O. Cm góc BAM= góc CAD c. cm AD vuông góc NP d. Gọi R là bán kính đường tròn ngoại tiếp tứ giác BCNP . Cm BH.BN+CH.CP=4R^2 e. Gợi I là trung điểm B. CM AH=1OI
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, có hai đường cao BB' và CC' cắt nhau tại H a)Chứng minh tứ giác BCB'C' nội tiếp? b)Gọi H' là đối xứng của H qua BC. Chứng minh H thuộc đường tròn tâm O? c)Tia AO cắt đường tròn tâm O tại D và cắt B'C' tại I. Chứng minh AD vông góc với C'B'
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao AM và CN của tam giác ABC cắt nhau tại H. Gọi D và E là giao điểm thứ hai của tia AM và tia CN vs đườg tròn(O).chứng minh: a. Tứ giác BNHM nội tiếp b.BD=BE=BH c.ED//MN
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H. Tia AO cắt đường tròn tại D . Chứng minh
a) tứ giác AEHF nội tiếp đường tròn
B) tứ giác BHCD là hình bình hành
c) tứ giác BFEc nội tiếp được đường tròn
d) Tam giác AEF ~ tam giác ABC, suy ra AE.AC = AF.AB
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK