tính cạnh đáy BC của tam giác ABC cân, biết đường cao tương ứng của cạnh đáy bằng 15,6 cm và đường cao tương ứng của cạnh bên bằng 12 cm
Cho tam giác ABC vuông tại A, tiếp điểm của đường tròn nội tiếp với cạnh huyền chia cạnh huyền thành 2 phần có độ dài 9 cm và 4cm. Tính diện tích tg ABC, hãy tổng quát bài toán trên
cho Δ ABC vuông tại A đường cao AH. biết BC=2\(\sqrt{29}\) cm,tanB=\(\dfrac{5}{2}\)
a) Độ dài các cạnh AB, AC
b) Gọi M là trung điểm của đoạn BC, tính sin ∠AMB
cho tam giác ABC vuông tại A đường cao AH chia cạnh huyền thành 2 đoạn BH = 4 cm, HC = 6 cm. gọi M là trung điểm của AC.
a, Tính , AH, AD, AC. Tính số đo góc AMB.
b, kẻ AH\(\perp\)BM K thuộc BM chứng minh tam giác BKC\(\sim\) tam giác BHM
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho \(\Delta ABC\) vuông tại Â. Trung tuyến AM vuông góc với trung tuyến Bn và cạnh AB = 12cm. Độ dài cạnh BC là:
A. \(6\sqrt{2}cm\)
B. \(12\sqrt{2}cm\)
C. \(6\sqrt{3}cm\)
D. \(12\sqrt{3}cm\)
Cho tam giác ABC vuông tại A đường cao AH biết AB = 6 cm BC = 10 cm a) Tính độ dài đường cao AH và số đo B^ của tam giác ABC b) tính diện tích tam giác AHB
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Vẽ dây cung AD của (O) vuông góc với đường kính BC tại H. Gọi M là trung điểm cạnh OC và I trung điểm cạnh AC. Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt tia OI tại N. Trên tia ON lấy điểm S sao cho N là trung điểm cạnh OS.
a) Cm: Tam giác ABC vuông tại A và HA = HD
b) Cm : MN // SC và SC tiếp tuyến của đường tròn (O)
c) Gọi K là trung điểm cạnh HC , vẽ đường tròn đường kính AH cắt cạnh AK tại F. Cm: BH.HC = AF.AK
cho tam giác ABC cân tại A. \(\widehat{BAC}\)=120\(^0\), AB=a. tính độ dài cạnh BC theo a