Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Vy

Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC.

  a) chứng minh tam giac BEM = tam giác CFM    

  b)chứng minh AM vuông góc với EF

   c) Từ b kẻ đường thẳng vương góc với AB tại B từ C kẻ đường vuông góc với AC tại C, 2 đường thẳng này cắt nhau tại D. Chứng minh rằng 3 điểm A,M,D thẳng hàng

Phương An
6 tháng 5 2016 lúc 19:56

Bạn tự vẽ hình nhaleu

a.

Xét tam giác EBM vuông tại E và tam giác FCM vuông tại F có:

BM = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)

EBM = FCM (tam giác ABC cân tại A)

=> Tam giác EBM = Tam giác FCM (cạnh huyền - góc nhọn)

b.

AB = AE + EB

AC = AF + FC

mà AB = AC (tam giác ABC cân tại A)

      EB = FC (tam giác EBM = tam giác FCM)

=> AE = AF => F thuộc trung trực của EF (1)

mà EM = FM (tam giác EBM = tam giác FCM) => M thuộc trung trực của EF (2)

Từ (1) và (2) => AM là đường trung trực của EF

hay AM _I_ EF

c.

AM là trung tuyến của tam giác ABC cân tại A

=> AM là tia phân giác của BAC (3)

Xét tam giác BAP vuông tại B và tam giác CAP vuông tại Ccó:

AB = AC (tam giác ABC cân tại A)

AP là cạnh chung

=> Tam giác BAP = Tam giác CAP (cạnh huyền - cạnh góc vuông)

=> BP = CP (2 cạnh tương ứng)

=> AP là tia phân giác của BAC

mà AM là tia phân giác của BAC (theo 3)

=> AP \(\equiv\) AM

=. A , P , M thẳng hàng

Chúc bạn học tốtok

trần ngọc hân
6 tháng 5 2016 lúc 20:11

a) xét tam giác BEM và tam giác CFM có :

góc B = góc C (do tam giác ABC cân tại A)

góc BEM = góc CFM =90 độ

BM = CM (gt)

=> tam giác BEM =tam giác CFM (ch-gn)

=>EM=MF (2 cạnh t ư )

b) gọi I là giao của AM và EF

cm tương tự ta cũng có tam giác AEI= tam giác AFI (c.c.c)

=>  EI= IF (2 cạnh t ư )

cm tương tự ta cũng có tam giác EAI = tam giác FAI  ( c.g.c )

=> góc EIA = góc FIA ( 2 góc t ư )

mà góc EIA + góc FIA =180 độ 

=> góc EIA = góc FIA = 90 độ 

=>  AM vuông góc vs EF tại I

C) CM : góc AMD = 180 ĐỘ 


Các câu hỏi tương tự
Trần Thị Thúy Hiền
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Trần Thị Thúy Hiền
Xem chi tiết
Nguyễn Thúy Duy
Xem chi tiết
Hoàngg Quân
Xem chi tiết
Hell Red
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết