Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
wcdccedc

Cho tam giác ABC cân tại A . Vẽ đường cao AH , BK . Chứng minh \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Hung nguyen
29 tháng 8 2017 lúc 14:20

A B C H K

Xét \(\Delta ACH;\Delta BCK\)

\(\left\{{}\begin{matrix}\widehat{C}\left(chung\right)\\\widehat{AHC}=\widehat{BKC}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta ACH\sim\Delta BCK\)

\(\Rightarrow\dfrac{AH}{BK}=\dfrac{CH}{CK}\)

\(\Rightarrow AH.CK=BK.CH\)

\(\Rightarrow AH^2.CK^2=BK^2.CH^2\)

\(\Rightarrow AH^2.CK^2=\dfrac{BK^2.BC^2}{4}\)

\(\Rightarrow AH^2.\left(BC^2-BK^2\right)=\dfrac{BK^2.BC^2}{4}\)

Chia cả 2 vế cho: \(AH^2.BC^2.BK^2\)

\(\Rightarrow\dfrac{1}{BK^2}-\dfrac{1}{BC^2}=\dfrac{1}{4AH^2}\)

\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)


Các câu hỏi tương tự
Phạm Thị Thùy Dương
Xem chi tiết
prayforme
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết
Nguyễn Thế Mãnh
Xem chi tiết
Trần Đông
Xem chi tiết
dffhb
Xem chi tiết
Nguyễn Hoàng trung
Xem chi tiết
Thư Nguyễn
Xem chi tiết