cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 1) BM^2 =BH^3/BC
2)AH^3= BC. BM . CN
3) HM . HN =AH^3/BC
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho tam giác ABC cân tại A. Kẻ đường cao AH,BK. CHứng minh \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4.AH^2}\)
Cho tam giác ABC cân tại A . Vẽ đường cao AH , BK . Chứng minh \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
Cho tam giác ABC cân ở A, có đường cao AH = 32cm, đường cao BK = 38,4cm a) Tính các cạnh của tam giác ABC
b) đường trung trực của AC cắt AH tại O, tính OH
giúp ta nào các hảo huynh đệ
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Lấy điểm D trên cạnh AC và E trên tia AH và ngoài đoạn thẳng AH sao cho AD/AC = HE/HA = 1/3 . Chứng minh rằng tam giác BED là tam giác vuông.
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (