Cho đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh BC,CA,AB tương ứng tại D,E,F. Đường tròn tâm O' bàng tiếp góc BAC của tam giascABC tiếp xúc với BC và phần kéo dài của các cạnh AB,AC tại P,M,N
1. Chứng minh rằng BP=CD
2. Trên đường thẳng MN lấy các điểm I và K sao cho CK // AB, BI//AC .Chứng minh rằng các tứ giác BICE và BKCF là các hình bình hành.
3. Gọi (S) là đường tròn đi qua ba điểm I,K,P. Chứng minh (S) tiếp xúc với các đường thẳng BC,BI,CK
cho tam giác ABC nội tiếp đường tròn O,đường tròn K tiếp xúc trong vs đtròn O tại T và tiếp xúc 2 cạnh AB,AC tại E,F chưng minh tâm I đtròn nội tiếp tam giác ABC là trung điểm EF
cho tam giác đều ABC nội tiếp đường tròn (O;R).gọi (O') là đường tròn tiếp xúc trong với đường tròn (O) và tiếp xúc hai cạnh AB,AC theo thứ tự tại M và N
a, CMR 3đ O,M,N thẳng hàng
b,tính bán kính của (O') theo R
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
Cho tam giác ABC có đường tròn nội tiếp (I), tiếp xúc với các cạnh BC,C A,AB theo thứ tự tại D,E,F. Đường thẳng qua A song song với BC cắt DE,DF thứ tự tại P,Q.
a) Chứng minh rằng A là trung điểm của PQ.
b) Chứng minh rằng trực tâm của tam giác DPQ nằm trên (I).
c) Gọi M là trung điểm EF. Chứng minh \(\widehat{PMQ}\) là góc tù.
Idol nào zô làm cái
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Chứng minh rằng tam giác ABC cân
cho tam giác ABC ngoại tiếp đường tròn (I) .Gọi M,N,P lần lượt là các tiếp điểm trên các cạnh AB,AC,BC và MD,NE,PF là các đường cao tam giác MNP chứng minh FP là tia phân giác của góc BFC b)DA.FB.EC=EA.BD.FC