Cho tam giác ABC cân đỉnh A . Trên cạnh AB lấy điểm D , trên tia đối của tia CA lấy điểm E sao cho BD = CE . Nối D với E . Gọi I là trung điểm của đoạn thẳng DE . Chứng minh rằng ba điểm B , I , C thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A,vẽ BE là phân giác của ABC(E thuộc AC).Trên cạnh BC lấy điểm D sao cho BD=BA .Chứng minh rằng :
a, Tam giác ABE= Tam Giác DBE b, DE VUÔNG GÓC BC ;
c, Trên tia đối của tia AB lấy điểm F sao cho AF = DC. C/minh : F,E,D thẳng hàng.
Bài 2: Cho xOy nhọn , vẽ Ot là phân giác của xOy .Lấy I trên Ot, kẻ IAOx (AOx)
cắt Oy tại K, kẻ IBOy cắt Ox tại H.Chứng minh:
a, Tam Giác AOI= Tam Giác BOI ; b, AK=BH c,Lấy D là trung điểm HK C/m: O,I,D thẳng
Cho tam giác ABC (AB < AC) . Gọi D là trung điểm của AC. Trên tia đối của cạnh DB lấy điểm E sao cho DE = DB . a) Chứng minh : . Suy ra AB // CE . b) Kẻ AF ⊥ BD tại F và CG ⊥ DE tại G . C/m : AF // CG và DF = DG c) Kẻ BH ⊥ AD tại H và EI ⊥ DC tại I . Đoạn BH cắt AF tại K. Đoạn CG cắt EI tại M. C/m: K, D, M thẳng hàng
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của DE và BC. Qua E vẽ đường thẳng song song với AB, cắt BC tại F. a) Chứng minh: tam giácBDI = tam giác FEI. b) Chứng minh I là trung điểm của DE.
giúp mk vs __#camon__
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC,D là trung điểm của AC.
a) Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Chứng minh rằng AE song song với BC.
b) Trên tia đối của tia AB lấy điểm Fsao cho AF=AB. Chứng minh rằng góc FAC= 2 góc ABC
c) Chứng minh rằng AD song song với EF và AD = 1/2 EF
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a.chứng minh tg MDB=tg NEC
b.gọi I là giao điểm của MN và BC,chứng minh: I là trung điểm của MN
c.Kẻ AH là đường phân giác của góc BAC;đường thẳng kẻ qua I vuông góc với MN cắt AH tại K chứng minh NCK=MBK
cho tam giác abc vuông tại a. lấy d trên cạnh bc sao cho góc bad= góc bca. Trên tia đối của tia AD lấy điểm E sao cho AE= BC. Trên tia đối của tia CA lấy điểm F sao cho CF=AB. CHỨNG MINH BE VUÔNG GÓC BF
Cho △ABC cân tại A.Trên cạnh AB lấy điểm D,trên tia đối của tia CA lấy điểm E sao cho BD=CE.Gọi I là giao điểm của DE và BC.Qua E vẽ đường thẳng song song với AB,cắt BC tại F
a,Chứng minh:△BDI=△FEI
b,Chứng minh I là trung điểm của DE