Cho tam giác ABC cân tại A. Trên AB lấy điểm D trên AC. Lấy điểm E sao cho AD=CE. Gọi I là trung điểm của DE, AI giao với BC tại K. Chứng minh: Tứ giác ADKE là hình bình hành
Cho tam giác ABC cân tại A. Trên AB lấy điểm D trên AC. Lấy điểm E sao cho AD=CE. Gọi I là trung điểm của DE, AI giao với BC tại K. Chứng minh: Tứ giác ADKE là hình bình hành
Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Cho tam giác ABC cân ở A. Lấy điểm D trên cạnh AB, E thuộc AC sao cho AD=CE. Gọi I là trung điểm của DE, K là giao điểm của AI và BC. CMR ADKE là hình bình hành
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.