Cho tam giác ABC cân tại A . Tia phân giác của góc BAC cắt BC tại D
a) Chứng minh tam giác ABD bằng tam giác ACD
b) Trên tia đối của tia BC và CB lấy theo thứ tự hai điểm G và E sao cho BG=CE. Chứng minh tam giác AGE là tam giác cân
c) Từ B và C vẽ BH và CK theo thứ tự vuông góc với AG và AE.Chứng mình HK//BC
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Ta có: \(\widehat{ABG}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABG}=\widehat{ACE}\)
Xét ΔABG và ΔACE có
AB=AC
\(\widehat{ABG}=\widehat{ACE}\)
BG=CE
Do đó: ΔABG=ΔACE
=>AG=AE
=>ΔAGE cân tại A
c: Xét ΔHAB vuông tại H và ΔKAC vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)(ΔABG=ΔACE)
Do đó: ΔHAB=ΔKAC
=>AH=AK
Xét ΔAGE có \(\dfrac{AH}{AG}=\dfrac{AK}{AE}\)
nên HK//GE
=>HK//BC