a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó ΔAHM=ΔAKM
Suy ra: AH=AK
Xét ΔABC có AH/AB=AK/AC
nên KH//BC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó ΔAHM=ΔAKM
Suy ra: AH=AK
Xét ΔABC có AH/AB=AK/AC
nên KH//BC
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Cho tam ABC cân tại A , có góc BAC = 90 độ . Gọi M , N lần lượt là trung điểm của các đoạn AB , AC . Kẻ NH vuông góc với CM tại H , AK vuông góc với CM tại K .
a, Chứng minh : tam giác CHN = tam giác AKM và tam giác CHA = tam giác AKB
b, Chứng minh : tam giác ABH cân tại B
c, Kẻ HE vuông góc với AB tại E chưng minh : Hm là phân giác góc BHE
Mọi người ơi giúp mik bài này vs , mik cảm ơn nhìu nhaa
cho tam giác ABC vuông cân đáy BC . MN là trung điểm của AB,AC.kẻ NH vuông góc CM.HE vuông góc AB
a) kẻ AK vuông góc MC, AQ vuông góc HN. Chứng minh góc BKA bằng góc AHC
b)Chứng minh tam giác ABH cân
c) Chứng minh HM là phân giác của góc BHE
Cho tam giác ABC vuông tại A có góc ABC=60độ.
a)Tính số đo góc ACB và so sánh độ dài hai cạnh AB, AC
b) Gọi M là trung điểm AC. Kẻ đường thẳng vuông góc với AC tại M, đường thẳng này cắt BC tại N, Chứng minh tam giác AMN= tam giác CMN
c)Chứng minh tam giác ABN là tam giác đều
d)Gọi G là giao điểm của AN và BM, Chứng minh BC=6.GN
cho tam giác ABC vuông tại A , góc B = 60 độ . Tia phân giác của góc B cắt AC tại I
a) Tính góc C , góc ABI , góc CBI
b) Trên cạnh BC lấy điểm D sao cho AB= BD . Chứng minh tam giác ABI = tam giác DBI suy ra DI vuông góc với BC
c) Chứng minh D là trung điểm của BC
d) AB cắt DI tại K . Chứng minh tam giác KIC cân
e) Chứng minh AD// KC
g) gọi M là trung điểm của KC . Chứng minh B, I , M thẳng hàng
Cho tam giác ABC cân tại A (BAC <90°), Kẻ BI vuông góc với AC tại 1. Trên cạnh BC lấy điểm M bất kỳ (M khác B và C). Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AB, AC, BI. 1) Chứng minh rằng tam giác DBM = tam giác FMB. 2) Cho BC = 10cm, CI = 6cm. Tính tổng MD + ME. 3) Trên tia đối của tia CA lấy điểm K sao cho CK = EI. Chứng minh BC đi qua trung điểm của đoạn thẳng DK.
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM