Cho tam giác ABC cân tại A. Lấy M, N lần lượt là trung điểm AB, AC. Trên tia đối của tia MC lấy D sao cho DM = MC. Trên tia đối của tia NB lấy E sao cho EN = NB.
a) CM: tam giác ANE = tam giác CNB và suy ra AE // BC
b) CM: tam giác AMD = tam giác BMC.
c) CM: D; A ; E thẳng hàng.
d) CM: DB = EC
e) Lấy K là trung điểm BM. Lấy F thuộc tia đối KC sao cho FK = KC.
(Vẽ hình, chú thích đầy đủ giúp mình nha)
a: Xét ΔANE và ΔCNB có
NA=NC
\(\widehat{ANE}=\widehat{CNB}\)
NE=NB
Do đó: ΔANE=ΔCNB
Suy ra: \(\widehat{AEN}=\widehat{CBN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC
b: Xét ΔAMD và ΔBMC có
MA=MB
\(\widehat{AMD}=\widehat{BMC}\)
MD=MC
Do đó: ΔAMD=ΔBMC