Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Nhung

Cho tam giác ABC cân tại A. Kẻ BE và CF lần lượt vuông góc với AC và AB(E∈AC;F∈AB)

1/ C/minh BE=CF và góc ABE= góc ACF

2/ Gọi I là giao điểm của BE và CF, c/minh IE=IF

3/ AI là tia p/g của góc A

Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 20:25

1) Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(cạnh huyền-góc nhọn)

Suy ra: BE=CF(hai cạnh tương ứng)

Ta có: ΔABE=ΔACF(cmt)

nên \(\widehat{ABE}=\widehat{ACF}\)(hai góc tương ứng)

2) Ta có: ΔABE=ΔACF(cmt)

nên AE=AF(Hai cạnh tương ứng)

Ta có: AF+FB=AB(F nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AE=AF(cmt)

nên FB=EC

Ta có: \(\widehat{ABE}=\widehat{ACF}\)(cmt)

nên \(\widehat{FBI}=\widehat{ECI}\)

Xét ΔFBI vuông tại F và ΔECI vuông tại E có 

FB=EC(cmt)

\(\widehat{FBI}=\widehat{ECI}\)(cmt)

Do đó: ΔFBI=ΔECI(cạnh góc vuông-góc nhọn kề)

Suy ra: IB=IC(hai cạnh tương ứng)

3) Xét ΔABI và ΔACI có

AB=AC(ΔABC cân tại A)

AI chung

IB=IC(cmt)

Do đó: ΔABI=ΔACI(c-c-c)

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AB,AC

nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)

£€Nguyễn -.- Nguyệt ™Ánh...
22 tháng 2 2021 lúc 20:18

a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:

AB = AC ( gt ) 

Góc A chung

=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)

=> BE = CF và góc ABE = góc ACF

b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:

BC chung

FC = EB ( c/m trên)

=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)

=> FB=EC

Tam giác ECI và tam giác FBI, có:

EC=FB (c/m trên)

góc E= góc F (=90 độ)

góc ACF = góc ABE (c/m trên)

=> tam giác ...= tam giác... (g-c-g)

c) Ta có: FA=AB - FB

              EA=AC - EC

mà AB=AC; FB=EC

=> FA=EA

tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:

AI chung

FA=EA (c/ m trên)

=> tam giác... = tam giác... (  cạnh huyền-cạnh góc vuông)

=> góc BAI = góc CAI

hay AI là phân giác của góc A

chúc bạn học tốt nha :>

-Phạm Nhật Long-
23 tháng 2 2021 lúc 14:32

a) Ta có : \(\Delta ABC\) cân tại A

\(\Rightarrow\) \(\widehat{B}=\widehat{C}\) ( tính chất  \(\Delta\) cân )

Xét \(\Delta EBC\) và \(\Delta FCB\) có :

Cạnh BC chung\

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(\Rightarrow\Delta ECB=\Delta FBC\) ( cạnh huyền - góc nhọn )

\(\Rightarrow\) BE = CF ( 2 cạnh tương ứng ) \(\rightarrow\) điều phải chứng minh

 \(\widehat{EBC}=\widehat{FCB}\) ( 2 góc tương ứng )

  BF = CE ( 2 cạnh tương ứng )

Có \(\widehat{EBC}=\widehat{FCB}\) ( cmt )

      \(\widehat{B}=\widehat{C}\left(cmt\right)\)

Mà \(\widehat{EBC}+\widehat{ABE}=\widehat{B}\) 

     \(\widehat{FCB}+\widehat{ACF}=\widehat{C}\)

\(\Rightarrow\widehat{ABE}=\widehat{ACF}\) ( tính chất bắc cầu ) \(\rightarrow\) điều phải chứng minh

b) Xét \(\Delta IFB\) và \(\Delta IEC\) có :

\(\widehat{IFB}=\widehat{IEC}\left(gt\right)\)

BF = CE ( cmt )

\(\widehat{FBI}=\widehat{ECI}\)  (\(F\in BA\)\(E\in CA\)\(I\in BE,CF\)\(\widehat{ABE}=\widehat{ACF}\) )

\(\Rightarrow\Delta IFB=\Delta IEC\) ( góc - cạnh - góc )

\(\Rightarrow IE=IF\) ( 2 cạnh tương ứng )

c) Xét \(\Delta IAF\) vuông tại F và \(\Delta IAE\) vuông tại E có :

Cạnh AI chung

\(\widehat{AIF}=\widehat{AIE}\) ( \(BE\perp AC,CF\perp AB\) )

IF = IE ( cmt )

\(\Rightarrow\Delta IAF\) vuông tại F = \(\Delta IAE\) vuông tại E ( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\widehat{IAF}=\widehat{IAE}\) ( 2 góc tương ứng )

Ta có : \(\widehat{IAF}=\widehat{IAE}\) ( cmt ) 

Mà tia AI nằm giữa tia AF và AE 

      tia AI chia \(\widehat{A}\) thành 2 góc \(\widehat{IAF}\) và \(\widehat{IAE}\)

\(\Rightarrow\) AI là tia phân giác của \(\widehat{A}\) ( điều phải chứng minh )

                                                                

 

 

 

 

 


Các câu hỏi tương tự
pham gia loc
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Nguyễn Lê Phương Chi
Xem chi tiết
phamthuyduong
Xem chi tiết
Nguyễn Nhất Lam
Xem chi tiết
mình kém lắm:(
Xem chi tiết
Tâm Nguyễn
Xem chi tiết
van Tran
Xem chi tiết
Duyên
Xem chi tiết