Bài 3: Cho tam giác ABC vuông tại A (AC>AB), M là điểm trên cạnh AC. Vẽ MD vuông góc với BC tại D. Gọi E là giao điểm của hai đường thẳng MD và AB. a) Chứng minh: ∆CDM∾∆CAB. b) Chứng minh: MD.ME=MA.MC c) Chứng minh: 𝑀𝐴𝐷 ̂ = 𝑀𝐸𝐶 ̂ d) giả sử 𝑆𝐴𝐵𝐷𝑀 = 3𝑆𝐶𝐷𝑀, chứng minh: BC=2MC
Bài 3. Cho tam giác ABC có AD là phân giác của góc BAC, D in BC a) Cho biết AB = 10 cm , AC = 12 cm BD = 4 cm . Tính độ dài đoạn thẳng BC. b) Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Gọi M là trung điểm của AB, AD cắt EM tại I, BE cắt MD tại K. Chứng minh rằng: (IE)/(IM) = (KD)/(KM) . Từ đó chứng minh: IK//ED
Cho tam giác ABC vuông tại A. Biết AB = 6cm, AC = 8cm. Từ trung điểm M của BC vẽ một đường thẳng vuông góc với B, cắt đường thẳng AC tại B và cắt đường thẳng AI tại E a) Hãy chứng minh tam giác EMB đồng dạng với tam giác CAB b) tính BC, EB và EM c) Hãy chứng minh AHC = HM.HE
hãy giúp mình với ạ bài này cần nộp sớm, cảm ơn mọi người nhiều;-;
Câu 7: (2,0đ) Cho tam giác ABC vuông tại A, đường cao AH. a/ Chứng minh hai tam giác HBA và ABC đồng dạng
b/ Trên cạnh AC lấy điểm D (D khác A và C), qua C vẽ đường thẳng d song song với BD, kẻ BK vuông góc với đường thẳng d tại K, kẻ BE song song với AC và cắt đường thẳng d tại E. Chứng minh: AB . BE = KB . BD và AKB=ACB.
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Cho ∆ABC vuông tại A( AB<AC) có đường cao AH.
a) Chứng minh ∆HBA~∆ABC và viết tỉ số đồng dạng.
b) Trên đoạn thẳng AH lấy điểm D. Gọi E là hình chiếu của C trên đường thẳng BD. Chứng minh BH.BC = BD.BE
c) Qua điểm D vẽ đường thẳng vuông góc với BE, trên đường thẳng này lấy điểm K, sao cho BA=BK. Chứng minh KB vuông góc KE.
Giúp mik với, mik cần gấp!
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Kẻ đường trung tuyến AM (MÎBC). Qua M kẻ đường thẳng vuông góc với BC cắt AC tại D.
a) Chứng minh
b) Tính độ dài đoạn thẳng BC và DM.
c) Gọi E là chân đường vuông góc kẻ từ C đến đường thẳng BD. Chứng minh rằng:
CD.CA + BD.BE = BC2
Mọi người giúp em với ạ cần gấp
Cho tam giác ABC cân tại A. Đường thẳng vuông góc với BC tại B cắt đường thẳng với AC tại C ở D . Vẽ BE vuông góc với CD tại E.M là giao điểm của AD và BE .Vẽ EN vuông góc với BD tại N . Chứng minh rằng :
a) MN // AB
b) M là trung điểm của BE
Các bạn giúp mình với , mai mình phải đi học rồi, mình đang cần rất gấp
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE