Cho biết cos alpha=1/4 thù giá trị của cotg alpha là 2)tam giác ABC vuông tại A đường cao AH. Cho biết CH=6cm và sinh= √3/2 thì độ dài đường cao là bao nhiêu? 3)tam giác ABC vuông tại A có AB=3cm và BC=5cm thì cotgB+cotgC có giá trị bằng bao nhiêu?
+ Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
Cho tam giác ABC vuông tại A , Đường cao AH .Biết BC = 8cm , BH = 2cm
a, Tính AB , AC, AH
b, Trên AC lấy K ( K khác A và C ) D là hình chiếu của A trên BK . Cm BD.BK = BH.BC
c, CM: S BHD = 1214 . S BKC .Cos22 ABD∠
Cho tam giác ABC vuông tại A , Đường cao AH .Biết BC = 8cm , BH = 2cm
a, Tính AB , AC, AH
b, Trên AC lấy K ( K khác A và C ) D là hình chiếu của A trên BK . Cm BD.BK = BH.BC
c, CM: S BHD = \(\dfrac{1}{4}\) . S BKC .Cos\(^2\) ABD∠
Cho tam giác ABC vuông tại A đường cao AH biết AC =8 cm ,cos BAC=2/3 a/tính AB b/tính AH
Cho tam giác ABC vuông tại A, AB=3cm; AC=4cm
a)Tính BC
b)Vẽ AH vuông góc BC. TÍnh AH,BH,CH
c)Vẽ AD là phân giác góc BAC. Tính BD,DC
d)viết tỉ số lượng giác của góc B rồi suy ra tỉ số lượng giác góc C
Câu 4: Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. 1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH. 2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D. a) Chứng minh BD là tiếp tuyến của đường tròn (C). b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 PE.QF = EF
Cho tam giác ABC có AB = 5cm, AC = 12cm, BC = 13cm.
a,Chứng minh tam giác ABC⊥ tại A và tính số đo góc B và C
b, Kẻ đường cao AH . Tính độ dài đường cao AH
c.kẻ HE⊥AB tại E ,HF ⊥ AC tại F Chứng minh AE.AB = AF.AC.
Cho △ABC vuông tại A , đường cao AH . Biết BC =8cm; BH =2cm
a) Tính AB, AC, AH
b) Trên AC lấy K . Gọi D là hình chiếu của A trên BK. Cmr: BD.BK = BH.BC
c) Cmr: SBHD= \(\dfrac{1}{4}\)SBKC.cosABD