. Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác của góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác DAE cân
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh tam giác BDF cân tại B.
c) Chứng minh BD = CE.
Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: Tam giác HAK cân
b) Chứng minh rằng: BH = CK.
c) Tính độ dài các đoạn thẳng AH và BH, biết AB = 9cm, AC = 12cm.
cho tam giác ABC cân tại A (A < 90 độ) kẻ BĐ vuông góc AC tại D.kẻ CE vuông góc AB tại E
a) C/m tam giác ADE cân
b)C/m DE // BC gọi I là giao điểm của BĐ và C/m IB=IC
(Ai giúp mik cần gấp cảm ơn mọi người)
a. cho tam giác ABC , qua giao điểm I các đường phân giác góc B và C của tam giác ABC, vẽ đường thẳng song song với BC, cắt các đường thẳng AB,AC lầ lượt tại M,N. chứng minh MN=MB+NC.
b.kết luận trên thay đổi ra sao nếu I là giao điểm 2 phân giác của góc ngoài tại đỉnh B và C?
c. kết luận trên thay đổi ra sao nếu I là giao điểm của tia phân giác của góc ngoài góc B và tia phân giác của góc ACB
Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
Cho tam giác ABC cân tại A. Các tia phân giác của góc B và góc C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC. Đường thẳng này cắt cạnh AB tại E và cắt cạnh AC tại F.
a) Tìm những tam giác cân có trên hình vẽ
b) Tìm những cặp tam giác cân bằng nhau
Cho tam giác ABC cân tại A, Â = 120° Từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D. a) Chứng minh ∆DAB = ∆DAC b) Chứng minh ∆ DBC là tam giác đều. c) Gọi H là giao điểm của AD và BC . Chứng minh 2BH + AD > AB + BD.
Cho \(\Delta ABC\)cân tại A, đường cao AH. Từ điểm M bất kì trên BC kẻ đường thẳng song song AH cắt AB,AC lần lượt tại N và P
a) Chứng minh \(\Delta ANP\)cân
b) Tính các góc của \(\Delta ANP\) biết \(\widehat{ABC}=70^0\)
c) Kẻ \(AI\perp MP\) tại I. Chứng minh \(AI//PC,AI=MH\)