Cho hình chữ nhật ABCD, gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.
a) Chứng minh MN//AD
b) Gọi I là trung điểm của cạnh BC, chứng minh tứ giác BMNI là hình bình hành
c) Chứng minh tam giác ANI vuông tại N
(ko dùng đg trung bình)
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
Cho hình chữ nhật ABCD có AB=12cm, BC=9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a/ Chứng minh tam giác AHB = tam giác BCD
b/ Tính độ dài đoạn thẳng AH c/ gọi M N P lần lượt là trung điểm của BC AH DH. tứ giác BMPN là hình gì? vì sao?
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE, HF vuông góc với AB, AC lần lượt tại E và F. Gọi M, N, P lần lượt là trung điểm của BC, HB, HC. a) Chứng minh tứ giác AEHF là hình chữ nhật b) Chứng minh EN = 1 2 HB c) C/ minh tứ giác NEFP là hình thăng vuông, tính diện tích của nó biết AB = 6m, AC = 8cm d) Chứng minh AM // EN
cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC .Từ M vẽ MD vuông góc với AB ,ME vuông góc với AC
a) chứng minh D là trung điểm của AB, tứ giác BDEMlà hình bình hành
b) vẽ AD vuông góc vs BC tại H . Gọi K là giao điểm của AH và DE. Đường thẳng DH cắt BK tại J và I là trung điểm của MK .
chứng minh J là trọng tâm tam giác ABH và 3 điểm C,I.J thẳng hàng
Cho △ABC vuông tại A, đường phân giác của góc A cắt BC tại D. Gọi I là trung điểm của DC và E là điểm đối xứng với A qua I.
a) Chứng minh tứ giác ADEC là hình bình hành.
b) Từ D kẻ DM vuông góc với AB (M ∈ AB), kẻ DN vuông góc với AC (N ∈ AC). Chứng minh tứ giác AMDN là hình vuông.
c) Chứng minh ba điểm M,D,E thằng hàng
Bài 1: Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB, AC.
a)Chứng minh MN // BC
b)Gọi D là điểm bất kỳ thuộc cạnh BC ( D khác B,C), AD cắt MN tại I. Chứng
minh I là trung điểm của AD.
Bài 2: Cho tam giác ABC cân tại A, M là trung điểm của BC. Kẻ Mx// AC cắt AB tại E, kẻ My// AB cắt AC tại F. Chứng minh rằng:
1)E,F là trung điểm của AB, AC
2) FE = 1/2 BC
3) ME=MF, AE=FA
Cho hình vuông ABCD. Gọi I, K theo thứ tự là trung điểm của các cạnh AB, CD. Nối CI, AK. CMR: a) Tứ giác AICK là hình bình hành. b) Gọi M là trung điểm của BC. Gọi P, Q lần lượt là giao điểm của DM với IC và AK. CMR: DM = AK và DM vuông AK
Giúp mình với ạ please!
Câu 4. (3,5 điểm) Cho tam giác ABC cân tại A. Gọi M , N lần lượt là trung điểm của AB và AC
a) Tính MN biết BC=7 cm
b) CMR tứ giác MNCB là hình thang cân
c) Kẻ MI vuông góc với BN tại I và CK vuông góc với BN tại K
CMR: CK=2MI