a: Xét tứ giác AHCJ có
I là trung điểm của AC
I là trung điểm của HJ
Do đó: AHCJ là hình bình hành
a: Xét tứ giác AHCJ có
I là trung điểm của AC
I là trung điểm của HJ
Do đó: AHCJ là hình bình hành
Cho tam giác ABC, các đường cao AK, BD, CE, trực tâm H. Gọi I là trung điểm của AC; J là điểm
đối xứng với H qua I.
a) Chứng minh tứ giác AHCJ là hình bình bình hành.
b) Chứng minh JAB =90 độ , JCB = 90 độ
các bạn ơi giúp mình;-;
Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I a) Biết AB = 8cm. Tính MI b) Chứng minh tứ giác AMCK là hình chữ nhật c) Chứng minh tứ giác ABMK là hình bình hành
Cho tam giác ABC cân tại A, đường trung tuyến AN. Gọi Ở là trung điểm của AC,P là điểm đối xứng với N qua O. Chứng minh tứ giác ANCP là hình bình hành
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
Cho tam giác ABC . Gọi I là trung điểm của BC. Lấy D đối xứng với A qua I. Chứng minh tứ giác ABDC là hình bình hành mong giúp đỡ
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°
cho tam giác ABC nhọn các đường cao AD và BE cắt nhau tại H. gọi M là trung điểm của BC điểm P đối xứng với điểm H qua đường thẳng BC. Điểm Q đối xứng với điểm H qua M.
a) chứng minh PQ // BC. khi đó tứ giác DMQP là hình gì? vì sao?
b)chứng minh tứ giác HCQP là hình bình hành. Tính số đo góc ACQ,góc ABQ.
c) Gọi O là giao điểm các đường trung trực của tam giác ABC. CMR O cách đều 5 điểm A, B, P, Q,C