a) Xét tứ giác AMCH có
I là trung điểm của đường chéo AC(gt)
I là trung điểm của đường chéo MH(M và H đối xứng nhau qua I)
Do đó: AMCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Hình bình hành AMCH trở thành hình thoi khi AM=CM
mà \(CM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)
Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
\(AM=\dfrac{BC}{2}\)(cmt)
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
⇒\(\widehat{BAC}=90^0\)
Vậy: Để AMCH là hình thoi thì ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\)