a: Xét ΔAIB va ΔCIE có
AI=CI
IB=IE
AB=CE
Do đó: ΔAIB=ΔCIE
b: Ta có: ΔAIB=ΔCIE
nên góc BAI=góc ECI
mà góc ECI=góc IAC
nên góc IAB=góc IAC
hay AI là phân giác củagóc BAC
a: Xét ΔAIB va ΔCIE có
AI=CI
IB=IE
AB=CE
Do đó: ΔAIB=ΔCIE
b: Ta có: ΔAIB=ΔCIE
nên góc BAI=góc ECI
mà góc ECI=góc IAC
nên góc IAB=góc IAC
hay AI là phân giác củagóc BAC
cho tam giác ABC ( AB<AC), lấy điểm E trên cạnh CA sao cho CE=BA, các đường trung trực BE và AC cắt nhau ở I
a) c/m tam giác AIB= tam giác CIE
b) c/m tia AI là tia phân giác của Â
Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Phân giác góc B cắt AC tại D.
a/ Chứng minh ΔABD=ΔEBD và DE⊥BC.
b/ Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK=EC.
c/ Gọi M là trung điểm của KC. Chứng minh ba điểm B,D,M thẳng hàng.
Cho ΔABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE.
a) CM: BE=CD
b) CM: DE//BC
c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Cho ΔABC vuông cân tại A , biết AB=AC=8cm
a) Tính BC
b) Từ A kẻ AM⊥BC. CMR: M là trung điểm BC
c) Từ M kẻ MN⊥AC. ΔAMN là tam giác vuông cân
d) Trên tia đối của tia MN lấy điểm E sao cho EN=NM..
Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK. Chứng minh tam giác ABC cân.
Bài 2: Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM = BN. Chứng tỏ tam giác ABC cân.
Bài 3: Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần lượt tại D và E. Chứng minh BD = CE.
Bài 4: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) TamgiácADEcân.
b) TamgiácBICcân.
c) IAlàtiaphângiáccủagócBIC.
Bài 5: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 6:
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
0
Bài 7: Cho tam giác ABC có góc A nhỏ hơn 90 . Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân
đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
Bài 8: Cho đoạn thẳng AB = 7cm. Lấy điểm C thuộc đoạn thẳng AB sao cho AC = 2cm. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax và By cùng vuông góc với AB. Lấy điểm D thuộc tia Ax, điểm E thuộc tia By sao cho: AD = 10 cm, BE = 1 cm.
a) Tính độ dài các đoạn thẳng DC, CE.
b) Chứng minh rằng: DC CE
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối của tia CE lấy E sao cho BD=CE, gọi I là gao điểm của DE và BC . Qua E vẽ đường thẳng song song AB cắt tại F
a, Chứng minh tam giác BDE=tam giác FEI
b,Chứng minh I là trung điểm của DE
Vẽ hình hộ mình với nha CẢM ƠN RẤT NHIỀU
Bài 1: Cho tam giác ABC có AB=AC. Lấy I là trung điểm BC
a) Chứng minh tam giác AIB=tam giác AIC
b) Chứng minh AI vuông góc với BC
c) Trên tia đối ủa tia IA lấy điểm K sao cho IA=IK. Chứng minh BK=AC
Bài 2: Cho tam giác ABC có góc BAC là góc nhọn, AB<AC. Vẽ tia Ax là phân giác của góc BAC, tia Ax cắt BD tại D. Trên tia AC lấy điểm E sao cho AE=AB
a) Chứng minh tam giác ADB=tam giác ADE
b)Chứng minh DB=DE
c) Biết góc BDA=65 độ. Tính số đo góc EDC
Bài 3: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA
a) Chứng minh tam giác BID=tam giác CIA
b) Chứng minh BD song song AC
c) Chứng minh BD vuông góc với AB
Bài 4: Cho góc xOy khác góc bẹt. Lấy các điểm A, B trên tia Ox sao cho OA<OB. Lấy các điểm C, D thuộc tia Oy sao cho OC=OA; OD=OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:
a) Tam giác OAD=tam giác OCB
b) BE=ED
c) OE là tia phân giác của góc xOy
Vẽ hình, ghi giả thiết+kết luận rồi làm bài cho mình nhanh nha
Cảm ơn mọi người trước ạ!