Cho tam giác ABC có AB= 12 cm , AC =16 cm . Từ B kẻ đường thẳng vuông góc với BC , đường thẳng này cắt đường thẳng AC tại E . a) Tính các cạnh của tam giác BCE b) Tính góc BEA( làm tròn lên độ) c) lấy điểm F nằm giữa B và E . TỪ b kẻ BH vuông góc với CF, H thuộc CF . CMR : tam giác CEF đồng dạng vs tma giác CHA
Cho tam giác ABC vuông tại C, đường cao CH. Biết AH = 4cm. HB = 9cm
a) Tính CH, CA ?
b) Kẻ HE vuông góc với AC, F vuông góc với BC (E thuộc AC, F thuộc BC) Chứng minh: CE . CA = CF . CB. Từ đó chứng minh: tam giác CEF đồng dạng với tam giác CBA
c) Chứng minh: AB = ACcosA + BCcosB
Tam giác ABC vuông tại A có BC=20cm, AB=10cm
1. Giải tam giác ABC vuông và tính độ dài đường cao AH
2. Cminh: tgB, Sin B=\(\dfrac{HC}{AB}\)
3. Kẻ phân giác của góc BAC cắt BC tại I. Tính HI
Cho △ABC vuông tại A. biết AB = 3 cm, BC = 5 cm.
a) Giải △ABC vuông (số đo góc làm tròn đến độ)
b) Từ B kẻ đường thắng vuông góc với BC, đường thẳng này cắt AC tại D. Tính AD, BD.
c) Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh: BF.BD=BE.BC
Cho tam giác ABC vuông tại A đường cao AH, AB=6, BC=10 a) Tính BH, HC, AH, góc BAH. b) Vẽ BD là tia phân giác của tam giác ABH ( D thuộc AC ). Kẻ AK vuông góc với BD tại K. Cmr: BH.BC=BK.BD. c) BD cắt AH tại S. Tính diện tích tứ giác SHCD?
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA
Cho \(\Delta ABC\) vuông tạ A có AB = 6 cm và BC = 12 cm
a. Tính độ dài cạnh AC và số đo các góc B, C
b. tia phân giác của góc B cắt cạnh AC tại D, giải tam giác vuông ABD
c. Từ D kẻ DE vuông góc BC (E thuộc BC). Không dùng số đo, chứng minh rằng \(\dfrac{S_{EDC}}{S_{ABC}}=tan^2\dfrac{B}{2}\)
1. Cho tam giác ABC vuông tại A, AB=15cm, AC=20cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì? Tính chu vi và diện tích của tứ giác AMEN.
d) Chứng minh: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AE}\)
Cho tam giác ABC vuông tại A có đường cao AH.
Biết AB = 12 cm, AC = 16 cm.
a) Tính độ dài các đoạn thẳng BC, AH,
BH và CH.
b) Kẻ HE ⊥ AB (E ∈ AB) và HF ⊥ AC
(F ∈ AC). Chứng minh rằng AE.AB =
AF.AC và suy ra tam giác ABC ∼ AFE.