Áp dụng tính chất đường phân giác vào tam giác ABC , có :
AD là đường phân giác góc A ( D \(\in BC\) )
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{10}{7}\)
Vây tỉ số của \(\dfrac{DB}{DC}\) là \(\dfrac{10}{7}\)
Áp dụng tính chất đường phân giác vào tam giác ABC , có :
AD là đường phân giác góc A ( D \(\in BC\) )
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{10}{7}\)
Vây tỉ số của \(\dfrac{DB}{DC}\) là \(\dfrac{10}{7}\)
CHO TAM GIAC ABC VUONG TAI A ,CO AB=12,AC=16 .KE DUONG CAO AH
A,CUNG MINH TAM GIAC HAB DONG DANG VOI TAM GIAC ABC
B, TINH DO DAI DOAN THANG BC,AH
C,GOI AD LA DUONG PHAN GIAC CUA BAC ,DE LA DUONG PHAN GIAC CUA ADB.DUONG THNAG VUONG GOC VOI DE TAI D ,CAT ACANH AC O F.CHUNG MINH EA/EB*DB/DC*FC/FA=1
1) Cho tam giác ABC nhọn , có AB=6cm , AC=12cm , BC=15cm . AD là đường phân giác của BAC.
a) Tính DB và DC
b) Kẻ DK//AC , (K thuộc AB) , Tính DK
c) c/m Tam giác BDK ~ Tam Giác BCA
2) Cho tam giác ABC nhọn , có AB=9cm , AC=10cm , BC=7cm là đường phân giác của BAC.
a) Tính DB và DC
b) Kẻ DH//AB , (H thuộc AC), tính DH
c) c/m tam giác CDH~ tam giác CBA
cho tam giac ABC vuong tai A AB=12, AC=16 ve duong cao AH duong phan giac BD cat AH tai E
a) chung minh tam giac ABC dong dang tam giac HBA tu do suy ra AB^2=BH*BC
B)Tinh AD
c) chung minh DB/EB=DC/DA
cho tam giác abc vuông ở a, có ab=6cm, ac=8cm, vẽ đường cao ah
a, tính bc
b, cm tam giác abc đồng dạng tam giác ahb
c, cm ab^2=bh.bc. tính bh, hc
d, vẽ phân giác ad của góc a( d thuộc bc). tính db
cho tam giac abc vuong tai a, co ab=3 cm ac=4 cm, duong phan giac ad. duong vuong goc voi dc cat ac tai e
a) cmr tam giac abc va tam giac dec dong dang
b) tinh do dai cac doan thang bc,bd
c) tinh do dai ad
d) tinh dien tich tam giac abc va dien tich tu giac abde
1. Cho tam giíac ABC nhọn, kẻ DE//BC (D thuộc AB, E thuộc AC).
a) CMR tam giác ABC đồng dạng tam giác ADE
b) Cho biết AB=15cm, BC=20cm, DE=12cm. Tính AD, BD.
c) Trên BC lấy điểm F sao cho CF= 12cm. Chứng minh tam giác DBF đồng dạng tam giác ABC
2. Cgo tam giác ABC có AB=6cm, AC= 8cm, BC= 10cm, vẽ đường cao AH.
a) CM: AB2= BC.BH
b) CM: tam giác HBA đồng dạng tam giác HAC.
c) CM: tam giác ABC vuông
d) Vẽ đường phân giác AD. Tính DB, DC
cho △abc ad la phan giac (d∈ bc) biet ab=3 ,ac=6 ,bd =4 tinh cd
giup minh di cam on moi nguoi nhieu
1. Cho tam giác vuông ABC vuông tại A có AB=6cm, AC =8cm,BC= 10cm. Đường cao AH (H thuộc BC).
A. Chỉ ra các cặp tam giác đồng dạng
B. Cho AD là đường phân giác ABC(D thuộc BC). Tính độ dài DB và DC
C. Chứng minh AB2 = BH.BC
D. Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E. Chứng minh tam giác ABD đồng dạng tam giác ECD
Cho tam giác ABC có AD là tia phân giác ngoài của tam giác BAC ( D thuộc BC ) . Chúng minh rằng \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)