a, Xét ∆ABM và ∆ECM, ta có:
- AM = ME (gt)
- \(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
- MB = MC (M là trung điểm BC)
=> ∆ABM = ∆ECM (c-g-c)
b, Xét ∆AMC và ∆BME, ta có:
- AM = ME (gt)
- \(\widehat{AMC}=\widehat{BME}\) (đối đỉnh)
- MB = MC (M là trung điểm BC)
=> ∆AMC = ∆BME (c-g-c)
=> AC = BE
c, Xét ∆AHB và ∆DHB, ta có:
- AH = HD (gt)
- \(\widehat{AHB}=\widehat{DHB}=90^o\)
- BH là cạnh chung (gt)
=> ∆AHB = ∆DHB (c-g-c)
=> \(\widehat{ABH}=\widehat{DBH}\)
=> BM là phân giác góc ABM
d,