a) Ta có: \(\widehat{BAM}+90^0+\widehat{CAN}=180^o\)
\(\Rightarrow\widehat{BAM}+\widehat{CAN}=90^0\) (1)
Lại có: \(\widehat{ACN}+\widehat{CAN}=90^0\)(tính chất của tam giác vuông) (2)
Từ (1) và (2), suy ra: \(\widehat{BAM}=\widehat{ACN}\)
Xét \(\Delta BAM\perp M\) và \(\Delta CAN\perp N\), ta có:
BA = AC (gt)
\(\widehat{BAM}=\widehat{ACN}\left(cmt\right)\)
\(\Rightarrow\Delta BMA=\Delta CNA\) (cạnh huyền - góc nhọn)
b) Vì \(\Delta BMA=\Delta CNA\) (theo câu a)
Nên BM = AN (2 cạnh tương ứng) (3)
và MA = NC ( 2 cạnh tương ứng) (4)
Ta có: MA + AN = MN (5)
Nên thay (3), (4) vào (5) ta được BM + CN = MN (đpcm)
Chúc you học tốt nhé!!!!~~~~