Để x là số nguyên thì \(2\left(a-3\right)⋮2a\)
\(\Leftrightarrow-6⋮2a\)
\(\Leftrightarrow2a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(a\in\left\{1;-1;3;-3\right\}\)(Vì a là số nguyên)
Để x là số nguyên thì \(2\left(a-3\right)⋮2a\)
\(\Leftrightarrow-6⋮2a\)
\(\Leftrightarrow2a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(a\in\left\{1;-1;3;-3\right\}\)(Vì a là số nguyên)
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
Cho số hữu tỉ x= − 7/ a + 2 (a ≠ -2, ∈ Z) với giá trị nào của a thì x là một số nguyên ??
1: cho \(A=\dfrac{2n+3}{n-1}\)
a, tìm điều kiện để A là số hữu tỉ
b, tìm \(n\in Z\) để A có giá trị là số nguyên
2: cho \(x=\dfrac{a}{n},y=\dfrac{b}{n}\left(a,b,n\in Z;n>0;x< y\right)\)
chứng tỏ rằng nếu \(Z=\dfrac{a+b}{2n}\) thì x < z < y
1.
a. Cho \(\dfrac{a}{2b+c}=\dfrac{b}{2c+a}=\dfrac{c}{2a+b}\left(a,b,c>0\right)\). Tính giá trị mỗi tỉ số
b. Tim x,y,z biết: \(\dfrac{2x-y}{5}=\dfrac{3y-2z}{15}\)và x + z = 2y
Cho \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{11}\) . Tính giá trị của \(A=\dfrac{y+z-x}{x+z-y}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
1)Cho x,y z khác và x - y - z= 0
Tính giá trị của biểu thức: \(\left(1-\dfrac{z}{x}\right).\left(1-\dfrac{x}{y}\right).\left(1+\dfrac{y}{z}\right)\)
2) Tính giá trị của M= \(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}\) ( Với a - b = 7) và a khác -3,5; b khác 3,5
Câu 1: Cho x, y, z là các số ≠ 0 và x+\(\dfrac{1}{y}\) =y+\(\dfrac{1}{z}\) =z+\(\dfrac{1}{x}\) . Chứng minh rằng
Hoặc x=y=z, hoặc x2y2z2=1.
Câu 2: Cho abc ≠ 0 và a+b+c ≠ 0. Tìm x, biết: \(\dfrac{a+b-x}{c}\) +\(\dfrac{a+c-x}{b}\) +\(\dfrac{b+c-x}{a}\) +\(\dfrac{4x}{a+b+c}\) =1
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)