§1. Giá trị lượng giác của một góc bất kỳ từ 0 (độ) đến 180 (độ)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho \(\sin\alpha=\dfrac{1}{4}\) với \(90^0< \alpha< 180^0\). Tính \(\cos\alpha\) và \(\tan\alpha\) ?

Bùi Thị Vân
18 tháng 5 2017 lúc 13:51

Do \(90^o< \alpha< 180^o\) nên \(cos\alpha,tan\alpha< 0\).
Vì vậy:
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{1}{4}:\dfrac{-\sqrt{15}}{4}=-\dfrac{1}{\sqrt{15}}\).


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
trần thị linh
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
trần thị linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Đào
Xem chi tiết
trần thị linh
Xem chi tiết