Giải:
\(S_n=1-2+3-4+...+n\left(-1\right)^{n-1}\)
\(\Leftrightarrow S_n=1-2+3-4+...+n-\left(n+1\right)\)
\(\Leftrightarrow S_n=\left(1-2\right)+\left(3-4\right)+...+\left(n-\left(n+1\right)\right)\)
\(\Leftrightarrow S_n=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
(Có tất cả: \(\dfrac{\left(n+1-1\right):1+1}{2}=\dfrac{n+1}{2}\) chữ số -1)
\(\Leftrightarrow S_n=\left(-1\right)\left(\dfrac{n+1}{2}\right)\)
\(\Leftrightarrow S_n=\dfrac{-n-1}{2}\)
\(\Leftrightarrow S_{35}=\dfrac{-35-1}{2}=\dfrac{-36}{2}=-18\)
Và \(S_{60}=\dfrac{-60-1}{2}=\dfrac{-61}{2}=-30,5\)
Vì \(-18>-30,5\)
\(\Leftrightarrow S_{35}>S_{60}\)
Vậy ...