Bài 1: Cho biểu thức A= (\(\frac{2-x}{x+3}\)-\(\frac{3-x}{x+2}\)+\(\frac{2-x}{x^2+5x+6}\)) : (\(1-\frac{x}{x-1}\))
a) Rút gọn A b)Tìm x để A=0; A>0
Bài 2: Cho biểu thức B=\(\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
a) Rút gọn B
b) Tìm số nguyên y để \(\frac{2D}{2y+3}\) có giá trị nguyên
c) Tìm số nguyên y để B >= 1
Giup mk nha mai mk nộp rùi
tính giá trị của các biểu thức sau:
a,\(\frac{9x^5-xy^4-18x^4y+2y^5}{3x^3y^2+xy^4-6x^2y^3-2y^5}\)biết x,y≠0,x≠2y và \(\frac{x}{y}=\frac{2}{3}\)
b,\(\frac{x^2+4y^2-4x\left(y+1\right)+8y-21}{\left(7+2y-x\right)^2-\left(7+2y-x\right)\left(2x+1-4y\right)}\)biết y≠\(\frac{1}{7},\)2y≠-7, 2y-x≠-2 và \(\frac{7x}{7y-1}=2\)
rút gọn: \(C=\frac{x^3y-xy^3+y^3z-yz^3+z^3x-zx^3}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
Bài tập: Tìm các số x; y; z biết rằng:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) và \(5x+y-2z=28\)
b) \(3x=2y;\) \(7y=5z;\) \(x-y+z=32\)
c) \(\frac{x}{3}=\frac{y}{4};\) \(\frac{y}{3}=\frac{z}{5}\) và \(2x-3y+z=6\)
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49
1tìm x,y,z
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}.\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5},xyz=810\)
2tìm x:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
3
\(CMRtừ:\frac{a+b}{a-b}=\frac{c+d}{c-d}\ne1\)
\(tacó:\frac{a}{b}=\frac{c}{d}\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
phân tích các đa thức sau thành nhân tử
a)\(3x^3y^2-6x^2y^3+9x^2y^2\)
b)12\(x^2y-18xy^2-30y^2\)
c)\(4x\left(2y-z\right)+7y\left(z-2y\right)\)
d)\(27x^2\left(y-1\right)-9x^3\left(1-y\right)\)
bài 2 : rút gọn các phân thức sau :
a.\(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\)
b.\(\frac{x^2+4x+3}{2x+6}\left(x\ne-3\right)\)
c.\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\left(y\ne0;x+y\ne0\right)\)
d. \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\)
e. \(\frac{x^2-xy}{3xy-3y^2}\left(x\ne y,y\ne0\right)\)
f. \(\frac{4x^2-4xy}{5x^3-5x^2y}\left(x\ne0,x\ne y\right)\)
g. \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)